extracellular potential
Recently Published Documents


TOTAL DOCUMENTS

69
(FIVE YEARS 7)

H-INDEX

20
(FIVE YEARS 1)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Michael Pycraft Hughes ◽  
Emily J. Kruchek ◽  
Andrew D. Beale ◽  
Stephen J. Kitcatt ◽  
Sara Qureshi ◽  
...  

AbstractEven in nonexcitable cells, the membrane potential Vm is fundamental to cell function, with roles from ion channel regulation, development, to cancer metastasis. Vm arises from transmembrane ion concentration gradients; standard models assume homogeneous extracellular and intracellular ion concentrations, and that Vm only exists across the cell membrane and has no significance beyond it. Using red blood cells, we show that this is incorrect, or at least incomplete; Vm is detectable beyond the cell surface, and modulating Vm produces quantifiable and consistent changes in extracellular potential. Evidence strongly suggests this is due to capacitive coupling between Vm and the electrical double layer, rather than molecular transporters. We show that modulating Vm changes the extracellular ion composition, mimicking the behaviour if voltage-gated ion channels in non-excitable channels. We also observed Vm-synchronised circadian rhythms in extracellular potential, with significant implications for cell–cell interactions and cardiovascular disease.


2021 ◽  
Vol 11 ◽  
Author(s):  
Karoline Horgmo Jæger ◽  
Verena Charwat ◽  
Samuel Wall ◽  
Kevin E. Healy ◽  
Aslak Tveito

Cardiomyocytes derived from human induced pluripotent stem cells (hiPSC-CMs) offer a new means to study and understand the human cardiac action potential, and can give key insight into how compounds may interact with important molecular pathways to destabilize the electrical function of the heart. Important features of the action potential can be readily measured using standard experimental techniques, such as the use of voltage sensitive dyes and fluorescent genetic reporters to estimate transmembrane potentials and cytosolic calcium concentrations. Using previously introduced computational procedures, such measurements can be used to estimate the current density of major ion channels present in hiPSC-CMs, and how compounds may alter their behavior. However, due to the limitations of optical recordings, resolving the sodium current remains difficult from these data. Here we show that if these optical measurements are complemented with observations of the extracellular potential using multi electrode arrays (MEAs), we can accurately estimate the current density of the sodium channels. This inversion of the sodium current relies on observation of the conduction velocity which turns out to be straightforwardly computed using measurements of extracellular waves across the electrodes. The combined data including the membrane potential, the cytosolic calcium concentration and the extracellular potential further opens up for the possibility of accurately estimating the effect of novel drugs applied to hiPSC-CMs.


2020 ◽  
Vol 40 (10) ◽  
pp. 1934-1952 ◽  
Author(s):  
Oscar Herreras ◽  
Julia Makarova

Spreading depolarization (SD) is a self-propagated wave that provokes transient disorder of numerous cell and tissue functions, and that may kill neurons in metabolically compromised tissue. We examined the mechanisms underlying the main hallmark of SD, a giant extracellular potential (ΔVo) for which multiple electromotive forces have been proposed. The end-point is that neurons and not glia, dendritic channels and not spatial currents, and increased sodium conductance rather than potassium gradients, appear to be the main actors in the generation of the negative ΔVo. Neuronal currents are established by two mechanisms, a voltage independent dendritic current, and the differential polarization along the neuron membranes. Notably, despite of a marked drop of ion gradients, these evolve significantly during SD, and yet the membrane potential remains clamped at zero no matter how much inward current is present. There may be substantial inward current or none in function of the evolving portion of the neuron dendrites with SD-activated channels. We propose that the ΔVo promotes swelling-induced dendritic damage. Understanding SD electrogenesis requires all elements relevant for membrane potential, action currents, field potentials and volume conduction to be jointly considered, and it has already encouraged the search for new targets to limit SD-related pathology.


2020 ◽  
Author(s):  
Karoline Horgmo Jæger ◽  
Verena Charwat ◽  
Sam Wall ◽  
Kevin E. Healy ◽  
Aslak Tveito

AbstractCardiomyocytes derived from human induced pluripotent stem cells (hiPSC-CMs) offer a new means to study and understand the human cardiac action potential, and can give key insight into how compounds may interact with important molecular pathways to destabilize the electrical function of the heart. Important features of the action potential can be readily measured using standard experimental techniques, such as the use of voltage sensitive dyes and fluorescent genetic reporters to estimate transmembrane potentials and cytosolic calcium concentrations. Using previously introduced computational procedures, such measurements can be used to estimate the current density of major ion channels present in hiPSC-CMs, and how compounds may alter their behavior. However, due to the limitations of optical recordings, resolving the sodium current remains difficult from these data. Here we show that if these optical measurements are complemented with observations of the extracellular potential using multi electrode arrays (MEAs), we can accurately estimate the current density of the sodium channels. This inversion of the sodium current relies on observation of the conduction velocity which turns out to be straightforwardly computed using measurements of extracellular waves across the electrodes. The combined data including the membrane potential, the cytosolic calcium concentration and the extracellular potential further opens up for the possibility of accurately estimating the effect of novel drugs applied to hiPSC-CMs.


2020 ◽  
Author(s):  
Helmut Schmidt ◽  
Gerald Hahn ◽  
Gustavo Deco ◽  
Thomas R. Knösche

AbstractAxonal connections are widely regarded as faithful transmitters of neuronal signals with fixed delays. The reasoning behind this is that extra-cellular potentials caused by spikes travelling along axons are too small to have an effect on other axons. Here we devise a computational framework that allows us to study the effect of extracellular potentials generated by spike volleys in axonal fibre bundles on axonal transmission delays. We demonstrate that, although the extracellular potentials generated by single spikes are of the order of microvolts, the collective extracellular potential generated by spike volleys can reach several millivolts. As a consequence, the resulting depolarisation of the axonal membranes increases the velocity of spikes, and therefore reduces axonal delays between brain areas. Driving a neural mass model with such spike volleys, we further demonstrate that only ephaptic coupling can explain the reduction of stimulus latencies with increased stimulus intensities, as observed in many psychological experiments.Author summaryAxonal fibre bundles that connect distant cortical areas contain millions of densely packed axons. When synchronous spike volleys travel through such fibre bundles, the extracellular potential within the bundles is perturbed. We use computer simulations to examine the magnitude and shape of this perturbation, and demonstrate that it is sufficiently strong to affect axonal transmission speeds. Since most spikes within a spike volley are positioned in an area where the extracellular potential is negative (relative to a distant reference), the resulting depolarisation of the axonal membranes accelerates the spike volley on average. This finding is in contrast to previous studies of ephaptic coupling effects between axons, where ephaptic coupling was found to slow down spike propagation. Our finding has consequences for information transmission and synchronisation between cortical areas.


Lab on a Chip ◽  
2020 ◽  
Vol 20 (22) ◽  
pp. 4273-4284
Author(s):  
Vivek Yadav ◽  
Nicholas Chong ◽  
Bradley Ellis ◽  
Xiang Ren ◽  
Satyajyoti Senapati ◽  
...  

An ion depleted zone was used to impose a high and uniform constant extracellular potential over an entire ∼1000 cell rat cardiomyocyte (rCM) colony on-a-chip, extending single-cell voltage-clamp ion channel studies to an entire normalized colony.


2019 ◽  
Vol 13 ◽  
Author(s):  
Vijay Viswam ◽  
Marie Engelene J. Obien ◽  
Felix Franke ◽  
Urs Frey ◽  
Andreas Hierlemann

2018 ◽  
Author(s):  
Alessio Paolo Buccino ◽  
Miroslav Kuchta ◽  
Karoline Horgmo Jæger ◽  
Torbjørn Vefferstad Ness ◽  
Pierre Berthet ◽  
...  

AbstractObjectiveMechanistic modeling of neurons is an essential component of computational neuroscience that enables scientists to simulate, explain, and explore neural activity. The conventional approach to simulation of extracellular neural recordings first computes transmembrane currents using the cable equation and then sums their contribution to model the extracellular potential. This two-step approach relies on the assumption that the extracellular space is an infinite and homogeneous conductive medium, while measurements are performed using neural probes. The main purpose of this paper is to assess to what extent the presence of the neural probes of varying shape and size impacts the extracellular field and how to correct for them.ApproachWe apply a detailed modeling framework allowing explicit representation of the neuron and the probe to study the effect of the probes and thereby estimate the effect of ignoring it. We use meshes with simplified neurons and different types of probe and compare the extracellular action potentials with and without the probe in the extracellular space. We then compare various solutions to account for the probes’ presence and introduce an efficient probe correction method to include the probe effect in modeling of extracellular potentials.Main resultsOur computations show that microwires hardly influence the extracellular electric field and their effect can therefore be ignored. In contrast, Multi-Electrode Arrays (MEAs) significantly affect the extracellular field by magnifying the recorded potential. While MEAs behave similarly to infinite insulated planes, we find that their effect strongly depends on the neuron-probe alignment and probe orientation.SignificanceIgnoring the probe effect might be deleterious in some applications, such as neural localization and parameterization of neural models from extracellular recordings. Moreover, the presence of the probe can improve the interpretation of extracellular recordings, by providing a more accurate estimation of the extracellular potential generated by neuronal models.


Sign in / Sign up

Export Citation Format

Share Document