Properties of Horizontal Saccades Accompanied by Blinks

1998 ◽  
Vol 79 (6) ◽  
pp. 2895-2902 ◽  
Author(s):  
Klaus G. Rottach ◽  
Vallabh E. Das ◽  
Walter Wohlgemuth ◽  
Ari Z. Zivotofsky ◽  
R. John Leigh

Rottach, Klaus G., Vallabh E. Das, Walter Wohlgemuth, Ari Z. Zivotofsky, and R. John Leigh. Properties of horizontal saccades accompanied by blinks. J. Neurophysiol. 79: 2895–2902, 1998. Using the magnetic search coil technique to record eye and lid movements, we investigated the effect of voluntary blinks on horizontal saccades in five normal human subjects. The main goal of the study was to determine whether changes in the dynamics of saccades with blinks could be accounted for by a superposition of the eye movements induced by blinks as subjects fixated a stationary target and saccadic movements made without a blink. First, subjects made voluntary blinks as they fixed on stationary targets located straight ahead or 20° to the right or left. They then made saccades between two continuously visible targets 20 or 40° apart, while either attempting not to blink, or voluntarily blinking, with each saccade. During fixation of a target located straight ahead, blinks induced brief downward and nasalward deflections of eye position. When subjects looked at targets located at right or left 20°, similar initial movements were made by four of the subjects, but the amplitude of the adducted eye was reduced by 65% and was followed by a larger temporalward movement. Blinks caused substantial changes in the dynamic properties of saccades. For 20° saccades made with blinks, peak velocity and peak acceleration were decreased by ∼20% in all subjects compared with saccades made without blinks. Blinks caused the duration of 20° saccades to increase, on average, by 36%. On the other hand, blinks had only small effects on the gain of saccades. Blinks had little influence on the relative velocities of centrifugal versus centripetal saccades, and abducting versus adducting saccades. Three of five subjects showed a significantly increased incidence of dynamic overshoot in saccades accompanied by blinks, especially for 20° movements. Taken with other evidence, this finding suggests that saccadic omnipause neurons are inhibited by blinks, which have longer duration than the saccades that company them. In conclusion, the changes in dynamic properties of saccades brought about by blinks cannot be accounted for simply by a summation of gaze perturbations produced by blinks during fixation and saccadic eye movements made without blinks. Our findings, especially the appearance of dynamic overshoots, suggest that blinks affect the central programming of saccades. These effects of blinks need to be taken into account during studies of the dynamic properties of saccades.

2002 ◽  
Vol 88 (3) ◽  
pp. 1220-1233 ◽  
Author(s):  
H. Rambold ◽  
A. Sprenger ◽  
C. Helmchen

Blinks are known to change the kinematic properties of horizontal saccades, probably by influencing the saccadic premotor circuit. The neuronal basis of this effect could be explained by changes in the activity of omnipause neurons in the nucleus raphe interpositus or in the saccade-related burst neurons of the superior colliculus. Omnipause neurons cease discharge during both saccades and vergence movements. Because eyelid blinks can influence both sets of neurons, we hypothesized that blinks would influence the kinematic parameters of saccades in all directions, vergence, and saccade-vergence interactions. To test this hypothesis, we investigated binocular eye and lid movements in five normal healthy subjects with the magnetic search coil technique. The subjects performed conjugate horizontal and vertical saccades from gaze straight ahead to targets at 20° up, down, right, or left while either attempting not to blink or voluntarily blinking. While following the same blink instruction, subjects made horizontal vergence eye movements of 7° and combined saccade-vergence movements with a version amplitude of 20°. The movements were performed back and forth from two targets simultaneously presented nearby (38 cm) and more distant (145 cm). Small vertical saccades accompanied most vergence movements. These results show that blinks change the kinematics (saccade duration, peak velocity, peak acceleration, peak deceleration) of not only horizontal but also of vertical saccades, of horizontal vergence eye movements, and of combined saccade-vergence eye movements. Peak velocity, acceleration, and deceleration of eye movements were decreased on the average by 30%, and their duration increased by 43% on the average when they were accompanied by blinks. The blink effect was time dependent with respect to saccade and vergence onset: the greatest effect occurred 100 ms prior to saccade onset, whereas there was no effect when the blink started after saccade onset. The effects of blinks on saccades and vergence, which are tightly coupled to latency, support the hypothesis that blinks cause profound spatiotemporal perturbations of the eye movements by interfering with the normal saccade/vergence premotor circuits. However, the measured effect may to a certain degree but not exclusively be explained by mechanical interference.


2001 ◽  
Vol 85 (4) ◽  
pp. 1395-1411 ◽  
Author(s):  
Mikhail A. Lebedev ◽  
Diana K. Douglass ◽  
Sohie Lee Moody ◽  
Steven P. Wise

When a small, focally attended visual stimulus and a larger background frame shift location at the same time, the frame's new location can affect spatial perception. For horizontal displacements on the order of 1–2°, when the frame moves more than the attended stimulus, human subjects may perceive that the attended stimulus has shifted to the right or left when it has not done so. However, that misapprehension does not disable accurate eye movements to the same stimulus. We trained a rhesus monkey to report the direction that an attended stimulus had shifted by making an eye movement to one of the two report targets. Then, using conditions that induce displacement illusions in human subjects, we tested the hypothesis that neuronal activity in the prefrontal cortex (PF) would reflect the displacement directions reported by the monkey, even when they conflicted with the actual displacement, if any, of the attended stimulus. We also predicted that these cells would have directional selectivity for movements used to make those reports, but not for similar eye movements made to fixate the attended stimulus. A population of PF neurons showed the predicted properties, which could not be accounted for on the basis of either eye-movement or frame-shift parameters. This activity, termed report-related, began approximately 150 ms before the onset of the reporting saccade. Another population of PF neurons showed greater directional selectivity for saccadic eye movements made to fixate the attended stimulus than for similar saccades made to report its displacement. In view of the evidence that PF functions to integrate inputs and actions occurring at different times and places, the present findings support the idea that such integration involves movements to acquire response targets, directly, as well as actions guided by less direct response rules, such as perceptual reports.


1996 ◽  
Vol 75 (6) ◽  
pp. 2229-2242 ◽  
Author(s):  
C. R. Kaneko

1. Although much is known about the neurons that control saccadic eye movements, the precise manner in which they interact is still uncertain. To test the validity of competing models of the pontine saccade generator, neurotoxic lesions were made in the nucleus raphe interpositus (rip), which contains one of the principal types of saccade-related neurons, the omnipause neurons (OPNs). The correlated changes in eye movement were quantified in three juvenile rhesus macaques and compared with the results predicted by different models. 2. After the location of the OPNs was mapped, the rip was subjected to sequential, punctate pressure injections of ibotenic acid. The resulting progressive damage was correlated with changes in saccade metrics, including a decrease in peak saccadic velocity and an increase in saccade duration. 3. The damage to rip and presumably to the OPNs was not associated with a change in the animals' ability to maintain steady fixation of a stationary target. 4. The results suggest that Robinson's original local feedback model of saccade generation should be modified. Either a second integrator should be added or the concept of local feedback should be abandoned entirely. 5. The suggestion that the OPNs are primarily responsible for fixation is probably incorrect. OPNs may contribute to fixation stability along with a number of other sources.


2005 ◽  
Vol 94 (4) ◽  
pp. 2295-2311 ◽  
Author(s):  
C. Busettini ◽  
L. E. Mays

Horizontal vergence eye movements are movements in opposite directions used to change fixation between far and near targets. The occurrence of a saccade during vergence causes vergence velocity to be transiently enhanced. The goal of this study was to test in the monkey the previously described Multiply Model (Zee et al. 1992) that holds that, in humans, the speeding of vergence during a saccade may be the result of the disinhibition of a subgroup of vergence-related neurons by the saccadic omnipause neurons (OPNs). In agreement with the Multiply Model: 1) the onset of the enhancement was closely related to saccadic onset, and thus linked to the onset of the OPN pause; 2) the magnitude of the vergence velocity enhancement was strongly dependent on saccade–vergence timing. Contrary to the Multiply Model: 1) the peak of the vergence velocity enhancement was dependent on saccadic peak velocity; 2) the dependency on saccadic peak velocity was not the indirect result of a dependency on saccadic duration and therefore on the duration of the OPN pause; 3) the decline of the vergence enhancement, identified by the time of the peak of the enhancement velocity, occurred too early to be linked to the end of the OPN pause; 4) vergence enhancement had a saccadic-like peak-velocity/size main sequence. Overall, the evidence is incompatible with the OPN Multiply hypothesis of vergence enhancement. Alternative models are described in an accompanying paper.


2016 ◽  
Vol 116 (6) ◽  
pp. 2541-2549 ◽  
Author(s):  
John R. Economides ◽  
Daniel L. Adams ◽  
Jonathan C. Horton

The superior colliculus is a major brain stem structure for the production of saccadic eye movements. Electrical stimulation at any given point in the motor map generates saccades of defined amplitude and direction. It is unknown how this saccade map is affected by strabismus. Three macaques were raised with exotropia, an outwards ocular deviation, by detaching the medial rectus tendon in each eye at age 1 mo. The animals were able to make saccades to targets with either eye and appeared to alternate fixation freely. To probe the organization of the superior colliculus, microstimulation was applied at multiple sites, with the animals either free-viewing or fixating a target. On average, microstimulation drove nearly conjugate saccades, similar in both amplitude and direction but separated by the ocular deviation. Two monkeys showed a pattern deviation, characterized by a systematic change in the relative position of the two eyes with certain changes in gaze angle. These animals' saccades were slightly different for the right eye and left eye in their amplitude or direction. The differences were consistent with the animals' underlying pattern deviation, measured during static fixation and smooth pursuit. The tectal map for saccade generation appears to be normal in strabismus, but saccades may be affected by changes in the strabismic deviation that occur with different gaze angles.


1993 ◽  
Vol 46 (1) ◽  
pp. 51-82 ◽  
Author(s):  
Harold Pashler ◽  
Mark Carrier ◽  
James Hoffman

Four dual-task experiments required a speeded manual choice response to a tone in a close temporal proximity to a saccadic eye movement task. In Experiment 1, subjects made a saccade towards a single transient; in Experiment 2, a red and a green colour patch were presented to left and right, and the saccade was to which ever patch was the pre-specified target colour. There was some slowing of the eye movement, but neither task combination showed typical dual-task interference (the “psychological refractory effect”). However, more interference was observed when the direction of the saccade depended on whether a central colour patch was red or green, or when the saccade was directed towards the numerically higher of two large digits presented to the left and the right. Experiment 5 examined a vocal second task, for comparison. The findings might reflect the fact that eye movements can be directed by two separate brain systems–-the superior colliculus and the frontal eye fields; commands from the latter but not the former may be delayed by simultaneous unrelated sensorimotor tasks.


Perception ◽  
1994 ◽  
Vol 23 (1) ◽  
pp. 45-64 ◽  
Author(s):  
Monica Biscaldi ◽  
Burkhart Fischer ◽  
Franz Aiple

Twenty-four children made saccades in five noncognitive tasks. Two standard tasks required saccades to a single target presented randomly 4 deg to the right or left of a fixation point. Three other tasks required sequential saccades from the left to the right. 75 parameters of the eye-movement data were collected for each child. On the basis of their reading, writing, and other cognitive performances, twelve children were considered dyslexic and were divided into two groups (D1 and D2). Group statistical comparisons revealed significant differences between control and dyslexic subjects. In general, in the standard tasks the dyslexic subjects had poorer fixation quality, failed more often to hit the target at once, had smaller primary saccades, and had shorter reaction times to the left as compared with the control group. The control group and group D1 dyslexics showed an asymmetrical distribution of reaction times, but in opposite directions. Group D2 dyslexics made more anticipatory and express saccades, they undershot the target more often in comparison with the control group, and almost never overshot it. In the sequential tasks group D1 subjects made fewer and larger saccades in a shorter time and group D2 subjects had shorter fixation durations than the subjects of the control group.


1983 ◽  
Vol 27 (8) ◽  
pp. 728-732 ◽  
Author(s):  
Ted Megaw ◽  
Tayyar Sen

It has been suggested by Bahill and Stark (1975) that visual fatigue can be identified by changes in some of the saccadic eye movement parameters. These include increases in the frequency of occurrence of glissades and overlapping saccades and reductions in the peak velocity and duration of saccades. In their study, fatigue was induced by the same step tracking task that was used to evaluate the changes in saccadic parameters. However, there is evidence that subjects experience extreme feelings of fatigue while performing such a task and that somehow the task is unnatural. The present study was designed to assess whether there are any differences in the various saccadic parameters obtained while subjects perform a step tracking task and a cognitive task involving the comparison of number strings. Both tasks were presented on a VDU screen. The second objective was to establish whether there are any changes in the parameters for either task as a result of prolonged performance. The results showed no major differences in the saccadic eye movements between the two tasks and no consistent changes resulting from prolonged performance.


2016 ◽  
Vol 116 (3) ◽  
pp. 1275-1285 ◽  
Author(s):  
Benjamin T. Crane

Thresholds and biases of human motion perception were determined for yaw rotation and sway (left-right) and surge (fore-aft) translation, independently and in combination. Stimuli were 1 Hz sinusoid in acceleration with a peak velocity of 14°/s or cm/s. Test stimuli were adjusted based on prior responses, whereas the distracting stimulus was constant. Seventeen human subjects between the ages of 20 and 83 completed the experiments and were divided into 2 groups: younger and older than 50. Both sway and surge translation thresholds significantly increased when combined with yaw rotation. Rotation thresholds were not significantly increased by the presence of translation. The presence of a yaw distractor significantly biased perception of sway translation, such that during 14°/s leftward rotation, the point of subjective equality (PSE) occurred with sway of 3.2 ± 0.7 (mean ± SE) cm/s to the right. Likewise, during 14°/s rightward motion, the PSE was with sway of 2.9 ± 0.7 cm/s to the left. A sway distractor did not bias rotation perception. When subjects were asked to report the direction of translation while varying the axis of yaw rotation, the PSE at which translation was equally likely to be perceived in either direction was 29 ± 11 cm anterior to the midline. These results demonstrated that rotation biased translation perception, such that it is minimized when rotating about an axis anterior to the head. Since the combination of translation and rotation during ambulation is consistent with an axis anterior to the head, this may reflect a mechanism by which movements outside the pattern that occurs during ambulation are perceived.


Sign in / Sign up

Export Citation Format

Share Document