Brain Stem Omnipause Neurons and the Control of CombinedEye-Head Gaze Saccades in the Alert Cat

1998 ◽  
Vol 79 (6) ◽  
pp. 3060-3076 ◽  
Author(s):  
Martin Paré ◽  
Daniel Guitton

Paré, Martin and Daniel Guitton. Brain stem omnipause neurons and the control of combined eye-head gaze saccades in the alert cat. J. Neurophysiol. 79: 3060–3076, 1998. When the head is unrestrained, rapid displacements of the visual axis—gaze shifts (eye-re-space)—are made by coordinated movements of the eyes (eye-re-head) and head (head-re-space). To address the problem of the neural control of gaze shifts, we studied and contrasted the discharges of omnipause neurons (OPNs) during a variety of combined eye-head gaze shifts and head-fixed eye saccades executed by alert cats. OPNs discharged tonically during intersaccadic intervals and at a reduced level during slow perisaccadic gaze movements sometimes accompanying saccades. Their activity ceased for the duration of the saccadic gaze shifts the animal executed, either by head-fixed eye saccades alone or by combined eye-head movements. This was true for all types of gaze shifts studied: active movements to visual targets; passive movements induced by whole-body rotation or by head rotation about stationary body; and electrically evoked movements by stimulation of the caudal part of the superior colliculus (SC), a central structure for gaze control. For combined eye-head gaze shifts, the OPN pause was therefore not correlated to the eye-in-head trajectory. For instance, in active gaze movements, the end of the pause was better correlated with the gaze end than with either the eye saccade end or the time of eye counterrotation. The hypothesis that cat OPNs participate in controlling gaze shifts is supported by these results, and also by the observation that the movements of both the eyes and the head were transiently interrupted by stimulation of OPNs during gaze shifts. However, we found that the OPN pause could be dissociated from the gaze-motor-error signal producing the gaze shift. First, OPNs resumed discharging when perturbation of head motion briefly interrupted a gaze shift before its intended amplitude was attained. Second, stimulation of caudal SC sites in head-free cat elicited large head-free gaze shifts consistent with the creation of a large gaze-motor-error signal. However, stimulation of the same sites in head-fixed cat produced small “goal-directed” eye saccades, and OPNs paused only for the duration of the latter; neither a pause nor an eye movement occurred when the same stimulation was applied with the eyes at the goal location. We conclude that OPNs can be controlled by neither a simple eye control system nor an absolute gaze control system. Our data cannot be accounted for by existing models describing the control of combined eye-head gaze shifts and therefore put new constraints on future models, which will have to incorporate all the various signals that act synergistically to control gaze shifts.

2007 ◽  
Vol 97 (2) ◽  
pp. 1149-1162 ◽  
Author(s):  
Mario Prsa ◽  
Henrietta L. Galiana

Models of combined eye-head gaze shifts all aim to realistically simulate behaviorally observed movement dynamics. One of the most problematic features of such models is their inability to determine when a saccadic gaze shift should be initiated and when it should be ended. This is commonly referred to as the switching mechanism mediated by omni-directional pause neurons (OPNs) in the brain stem. Proposed switching strategies implemented in existing gaze control models all rely on a sensory error between instantaneous gaze position and the spatial target. Accordingly, gaze saccades are initiated after presentation of an eccentric visual target and subsequently terminated when an internal estimate of gaze position becomes nearly equal to that of the target. Based on behavioral observations, we demonstrate that such a switching mechanism is insufficient and is unable to explain certain types of movements. We propose an improved hypothesis for how the OPNs control gaze shifts based on a visual-vestibular interaction of signals known to be carried on anatomical projections to the OPN area. The approach is justified by the analysis of recorded gaze shifts interrupted by a head brake in animal subjects and is demonstrated by implementing the switching mechanism in an anatomically based gaze control model. Simulated performance reveals that a weighted sum of three signals: gaze motor error, head velocity, and eye velocity, hypothesized as inputs to OPNs, successfully reproduces diverse behaviorally observed eye-head movements that no other existing model can account for.


2007 ◽  
Vol 98 (1) ◽  
pp. 360-373 ◽  
Author(s):  
Neeraj J. Gandhi ◽  
David L. Sparks

Natural movements often include actions integrated across multiple effectors. Coordinated eye-head movements are driven by a command to shift the line of sight by a desired displacement vector. Yet because extraocular and neck motoneurons are separate entities, the gaze shift command must be separated into independent signals for eye and head movement control. We report that this separation occurs, at least partially, at or before the level of pontine omnipause neurons (OPNs). Stimulation of the OPNs prior to and during gaze shifts temporally decoupled the eye and head components by inhibiting gaze and eye saccades. In contrast, head movements were consistently initiated before gaze onset, and ongoing head movements continued along their trajectories, albeit with some characteristic modulations. After stimulation offset, a gaze shift composed of an eye saccade, and a reaccelerated head movement was produced to preserve gaze accuracy. We conclude that signals subject to OPN inhibition produce the eye-movement component of a coordinated eye-head gaze shift and are not the only signals involved in the generation of the head component of the gaze shift.


2007 ◽  
Vol 98 (2) ◽  
pp. 696-709 ◽  
Author(s):  
A. G. Constantin ◽  
H. Wang ◽  
J. C. Martinez-Trujillo ◽  
J. D. Crawford

Previous studies suggest that stimulation of lateral intraparietal cortex (LIP) evokes saccadic eye movements toward eye- or head-fixed goals, whereas most single-unit studies suggest that LIP uses an eye-fixed frame with eye-position modulations. The goal of our study was to determine the reference frame for gaze shifts evoked during LIP stimulation in head-unrestrained monkeys. Two macaques ( M1 and M2) were implanted with recording chambers over the right intraparietal sulcus and with search coils for recording three-dimensional eye and head movements. The LIP region was microstimulated using pulse trains of 300 Hz, 100–150 μA, and 200 ms. Eighty-five putative LIP sites in M1 and 194 putative sites in M2 were used in our quantitative analysis throughout this study. Average amplitude of the stimulation-evoked gaze shifts was 8.67° for M1 and 7.97° for M2 with very small head movements. When these gaze-shift trajectories were rotated into three coordinate frames (eye, head, and body), gaze endpoint distribution for all sites was most convergent to a common point when plotted in eye coordinates. Across all sites, the eye-centered model provided a significantly better fit compared with the head, body, or fixed-vector models (where the latter model signifies no modulation of the gaze trajectory as a function of initial gaze position). Moreover, the probability of evoking a gaze shift from any one particular position was modulated by the current gaze direction (independent of saccade direction). These results provide causal evidence that the motor commands from LIP encode gaze command in eye-fixed coordinates but are also subtly modulated by initial gaze position.


1986 ◽  
Vol 56 (6) ◽  
pp. 1542-1557 ◽  
Author(s):  
R. D. Tomlinson ◽  
P. S. Bahra

Gaze (eye-in-space) velocity-duration and velocity-amplitude curves were prepared for head-fixed and head-free gaze shifts in the rhesus monkey with an emphasis on large amplitudes. These plots revealed the presence of two distinct gaze reorientation mechanisms, one used when the gaze shift was small (less than 20 degrees) and the other utilized for large coordinated gaze shifts when the head was free. When head-free and head-fixed saccadic gaze shifts were compared in the same animal, no differences in the metrics were found for amplitudes less than 20 degrees. However, for large gaze shifts where contribution of the head to the change in gaze angle was considerable, head-free saccades were found to exhibit lower peak gaze velocities and greater durations than those recorded with the head-fixed paradigm. In order to differentiate between the eye saccades and combined saccadic eye-head gaze shifts, the latter have been termed gaze saccades. Change in head position and change in eye position were both measured during the actual gaze shift and were plotted against the gaze-shift amplitude to determine whether the head movement contributed significantly to the change in gaze angle. The results indicate that below 20 degrees the gaze shift is accomplished almost exclusively with the eyes and the head moves very little; however, for larger saccades, the head contributes approximately 80% of the total change in gaze angle with the eyes contributing only approximately 20%. Large saccadic eye-head gaze shifts do not exhibit 'bell-shaped' velocity profiles as do smaller head-fixed saccades; instead, gaze accelerates to reach a peak velocity after approximately 30-40 ms. This velocity is then maintained for the duration of the gaze shift. Close scrutiny of the fine structure of the velocity profiles of the eye, head, and gaze channels indicates that during gaze saccades, the eye and head movement motor programs interact to maintain gaze velocity nearly constant, unaffected by changes in head velocity. Previous authors had stated that when velocity-duration plots are obtained for oblique saccades of constant amplitude, the resulting points could be fitted with a hyperbolic function. These results were confirmed for head-free gaze saccades and extended to larger amplitudes. When an oblique saccade is made, the smaller component is stretched in duration to match the duration of the larger component. However, as the gaze shift becomes large (greater than 40 degrees), the relationship becomes more complex.(ABSTRACT TRUNCATED AT 400 WORDS)


1990 ◽  
Vol 64 (6) ◽  
pp. 1873-1891 ◽  
Author(s):  
R. D. Tomlinson

1. The behavior of the combined eye-head gaze saccade mechanism was investigated in the rhesus monkey under both normal circumstances and in the presence of perturbations delivered to the head by a torque motor. Animals were trained to follow a target light that stepped at regular intervals through an angle of 68 degrees (+/- 34 degrees with respect to the midsagittal plane). Thus all primary saccades were center crossing. On randomly occurring trials the torque motor was pulsed so as to perturb the trajectory of the head, thus allowing us to assess both the functional state of the vestibuloocular reflex (VOR) and the effects of such perturbations on gaze saccade accuracy (gaze is defined as the sum of eye-in-head plus head-in-space, and a gaze saccade as a combined eye-head saccadic gaze shift). 2. Gaze shifts can be divided into two discrete sections: the portion during which the gaze angle is changing (the saccadic portion), and the portion during which the gaze is stationary but the head continues to move (the terminal head-movement portion). For the system to accurately acquire eccentric targets, at least two criteria must be met: 1) the saccadic portion must be accurate, and 2) the compensatory eye movement that occurs during the terminal head-movement portion must be equal and opposite to the head movement, thereby maintaining gaze stability. Perturbations delivered during the terminal head-movement portion of the gaze shift indicated that VOR was functioning normally, and thus we concluded that the compensatory eye movements that accompany head movements were vestibular in origin. 3. As reported previously, during the saccadic portion of large-amplitude gaze saccades, the VOR ceases to function. In spite of this observation, the accuracy of the gaze saccade is not affected by perturbations delivered to the head. Gaze accuracy is maintained both by changing the duration of the saccadic portion and by altering the head trajectory. 4. Because rhesus monkeys often make very rapid head movements (1,200 degrees/s), we wished to discover the velocity range over which the monkey VOR might be expected to operate. Accordingly, in a second series of experiments, VOR function was assessed during passive whole-body rotations with the head fixed. By the use of spring-assisted manual rotations, peak velocities up to 850 degrees/s were achieved. When VOR gain was measured during such rotations, it was found to be equal to 0.9 up to the maximum velocities used.(ABSTRACT TRUNCATED AT 400 WORDS)


2008 ◽  
Vol 100 (4) ◽  
pp. 1848-1867 ◽  
Author(s):  
Sigrid M. C. I. van Wetter ◽  
A. John van Opstal

Such perisaccadic mislocalization is maximal in the direction of the saccade and varies systematically with the target-saccade onset delay. We have recently shown that under head-fixed conditions perisaccadic errors do not follow the quantitative predictions of current visuomotor models that explain these mislocalizations in terms of spatial updating. These models all assume sluggish eye-movement feedback and therefore predict that errors should vary systematically with the amplitude and kinematics of the intervening saccade. Instead, we reported that errors depend only weakly on the saccade amplitude. An alternative explanation for the data is that around the saccade the perceived target location undergoes a uniform transient shift in the saccade direction, but that the oculomotor feedback is, on average, accurate. This “ visual shift” hypothesis predicts that errors will also remain insensitive to kinematic variability within much larger head-free gaze shifts. Here we test this prediction by presenting a brief visual probe near the onset of gaze saccades between 40 and 70° amplitude. According to models with inaccurate gaze-motor feedback, the expected perisaccadic errors for such gaze shifts should be as large as 30° and depend heavily on the kinematics of the gaze shift. In contrast, we found that the actual peak errors were similar to those reported for much smaller saccadic eye movements, i.e., on average about 10°, and that neither gaze-shift amplitude nor kinematics plays a systematic role. Our data further corroborate the visual origin of perisaccadic mislocalization under open-loop conditions and strengthen the idea that efferent feedback signals in the gaze-control system are fast and accurate.


1995 ◽  
Vol 73 (4) ◽  
pp. 1632-1652 ◽  
Author(s):  
J. O. Phillips ◽  
L. Ling ◽  
A. F. Fuchs ◽  
C. Siebold ◽  
J. J. Plorde

1. We studied horizontal eye and head movements in three monkeys that were trained to direct their gaze (eye position in space) toward jumping targets while their heads were both fixed and free to rotate about a vertical axis. We considered all gaze movements that traveled > or = 80% of the distance to the new visual target. 2. The relative contributions and metrics of eye and head movements to the gaze shift varied considerably from animal to animal and even within animals. Head movements could be initiated early or late and could be large or small. The eye movements of some monkeys showed a consistent decrease in velocity as the head accelerated, whereas others did not. Although all gaze shifts were hypometric, they were more hypometric in some monkeys than in others. Nevertheless, certain features of the gaze shift were identifiable in all monkeys. To identify those we analyzed gaze, eye in head position, and head position, and their velocities at three points in time during the gaze shift: 1) when the eye had completed its initial rotation toward the target, 2) when the initial gaze shift had landed, and 3) when the head movement was finished. 3. For small gaze shifts (< 20 degrees) the initial gaze movement consisted entirely of an eye movement because the head did not move. As gaze shifts became larger, the eye movement contribution saturated at approximately 30 degrees and the head movement contributed increasingly to the initial gaze movement. For the largest gaze shifts, the eye usually began counterrolling or remained stable in the orbit before gaze landed. During the interval between eye and gaze end, the head alone carried gaze to completion. Finally, when the head movement landed, it was almost aimed at the target and the eye had returned to within 10 +/- 7 degrees, mean +/- SD, of straight ahead. Between the end of the gaze shift and the end of the head movement, gaze remained stable in space or a small correction saccade occurred. 4. Gaze movements < 20 degrees landed accurately on target whether the head was fixed or free. For larger target movements, both head-free and head-fixed gaze shifts became increasingly hypometric. Head-free gaze shifts were more accurate, on average, but also more variable. This suggests that gaze is controlled in a different way with the head free. For target amplitudes < 60 degrees, head position was hypometric but the error was rather constant at approximately 10 degrees.(ABSTRACT TRUNCATED AT 400 WORDS)


2000 ◽  
Vol 84 (2) ◽  
pp. 1103-1106 ◽  
Author(s):  
Tyson A. Tu ◽  
E. Gregory Keating

The frontal eye field (FEF), an area in the primate frontal lobe, has long been considered important for the production of eye movements. Past studies have evoked saccade-like movements from the FEF using electrical stimulation in animals that were not allowed to move their heads. Using electrical stimulation in two monkeys that were free to move their heads, we have found that the FEF produces gaze shifts that are composed of both eye and head movements. Repeated stimulation at a site evoked gaze shifts of roughly constant amplitude. However, that gaze shift could be accomplished with varied amounts of head and eye movements, depending on their (head and eye) respective starting positions. This evidence suggests that the FEF controls visually orienting movements using both eye and head rotations rather than just shifting the eyes as previously thought.


2010 ◽  
Vol 103 (5) ◽  
pp. 2400-2416 ◽  
Author(s):  
Arjun Ramakrishnan ◽  
Snehal Chokhandre ◽  
Aditya Murthy

Although the nature of gaze control regulating single saccades is relatively well documented, how such control is implemented to regulate multisaccade gaze shifts is not known. We used highly eccentric targets to elicit multisaccade gaze shifts and tested the ability of subjects to control the saccade sequence by presenting a second target on random trials. Their response allowed us to test the nature of control at many levels: before, during, and between saccades. Although the saccade sequence could be inhibited before it began, we observed clear signs of truncation of the first saccade, which confirmed that it could be inhibited in midflight as well. Using a race model that explains the control of single saccades, we estimated that it took about 100 ms to inhibit a planned saccade but took about 150 ms to inhibit a saccade during its execution. Although the time taken to inhibit was different, the high subject-wise correlation suggests a unitary inhibitory control acting at different levels in the oculomotor system. We also frequently observed responses that consisted of hypometric initial saccades, followed by secondary saccades to the initial target. Given the estimates of the inhibitory process provided by the model that also took into account the variances of the processes as well, the secondary saccades (average latency ∼215 ms) should have been inhibited. Failure to inhibit the secondary saccade suggests that the intersaccadic interval in a multisaccade response is a ballistic stage. Collectively, these data indicate that the oculomotor system can control a response until a very late stage in its execution. However, if the response consists of multiple movements then the preparation of the second movement becomes refractory to new visual input, either because it is part of a preprogrammed sequence or as a consequence of being a corrective response to a motor error.


2011 ◽  
Vol 106 (4) ◽  
pp. 2000-2011 ◽  
Author(s):  
Luis C. Populin ◽  
Abigail Z. Rajala

We have studied eye-head coordination in nonhuman primates with acoustic targets after finding that they are unable to make accurate saccadic eye movements to targets of this type with the head restrained. Three male macaque monkeys with experience in localizing sounds for rewards by pointing their gaze to the perceived location of sources served as subjects. Visual targets were used as controls. The experimental sessions were configured to minimize the chances that the subject would be able to predict the modality of the target as well as its location and time of presentation. The data show that eye and head movements are coordinated differently to generate gaze shifts to acoustic targets. Chiefly, the head invariably started to move before the eye and contributed more to the gaze shift. These differences were more striking for gaze shifts of <20–25° in amplitude, to which the head contributes very little or not at all when the target is visual. Thus acoustic and visual targets trigger gaze shifts with different eye-head coordination. This, coupled to the fact that anatomic evidence involves the superior colliculus as the link between auditory spatial processing and the motor system, suggests that separate signals are likely generated within this midbrain structure.


Sign in / Sign up

Export Citation Format

Share Document