Orphanin FQ/Nociceptin Inhibits Synaptic Transmission and Long-Term Potentiation in Rat Dentate Gyrus Through Postsynaptic Mechanisms

1998 ◽  
Vol 80 (3) ◽  
pp. 1277-1284 ◽  
Author(s):  
Tzu-Ping Yu ◽  
Cui-Wei Xie

Yu, Tzu-Ping and Cui-Wei Xie. Orphanin FQ/nociceptin inhibits synaptic transmission and long-term potentiation in the rat dentate gyrus through postsynaptic mechanisms. J. Neurophysiol. 80: 1277–1284, 1998. Orphanin FQ/nociceptin (OFQ), a recently characterized natural ligand for the opioid receptor-like 1 (ORL1) receptor, shares structural similarity to the endogenous opioids. Our previous study found that OFQ, like classical opioids, modulated synaptic transmission and long-term potentiation (LTP) in the hippocampal CA1 region, suggesting a modulatory role for OFQ in synaptic plasticity involved in learning and memory. In the present study we investigated the action of OFQ in the dentate gyrus and explored possible underlying cellular mechanisms. Field potential recordings showed that OFQ significantly inhibited excitatory synaptic transmission and LTP induction in the dentate lateral perforant path. In the presence of OFQ, the excitatory postsynaptic potential (EPSP) slope-population spike (E-S) curve was shifted to the right, and no significant change was found in paired-pulse facilitation, suggesting a postsynaptic mechanism responsible for the inhibition of synaptic transmission. Under whole cell voltage-clamp conditions, bath application of OFQ activated K+ currents in most granule cells tested at a holding potential of −50 mV, suggesting that OFQ could reduce the excitability of dentate granule cells by hyperpolarizing cell membranes. OFQ also inhibited the amplitude of N-methyl-d-aspartate (NMDA) receptor–mediated excitatory postsynaptic currents (EPSCs) without affecting α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor–mediated EPSCs. This inhibition was not blocked by opioid receptor antagonists. Furthermore, the inward currents evoked by focal application of NMDA to granule cells were suppressed by OFQ in a dose-dependent manner, suggesting that OFQ may suppress LTP by inhibiting the function of postsynaptic NMDA receptors. These results demonstrate that OFQ may negatively modulate synaptic transmission and plasticity in the dentate gyrus through postsynaptic mechanisms, including hyperpolarization of granule cells as well as inhibition of the function of postsynaptic NMDA receptors/channels in dentate granule cells.

Hippocampus ◽  
1997 ◽  
Vol 7 (1) ◽  
pp. 88-94 ◽  
Author(s):  
Tzu-Ping Yu ◽  
Jeffrey Fein ◽  
Tien Phan ◽  
Christopher J. Evans ◽  
Cui-Wei Xie

Author(s):  
Julia Muellerleile ◽  
Matej Vnencak ◽  
Angelo Ippolito ◽  
Dilja Krueger-Burg ◽  
Tassilo Jungenitz ◽  
...  

Abstract Neuroligin-3 (Nlgn3), a neuronal adhesion protein implicated in autism spectrum disorder (ASD), is expressed at excitatory and inhibitory postsynapses and hence may regulate neuronal excitation/inhibition balance. To test this hypothesis, we recorded field excitatory postsynaptic potentials (fEPSPs) in the dentate gyrus of Nlgn3 knockout (KO) and wild-type mice. Synaptic transmission evoked by perforant path stimulation was reduced in KO mice, but coupling of the fEPSP to the population spike was increased, suggesting a compensatory change in granule cell excitability. These findings closely resemble those in neuroligin-1 (Nlgn1) KO mice and could be partially explained by the reduction in Nlgn1 levels we observed in hippocampal synaptosomes from Nlgn3 KO mice. However, unlike Nlgn1, Nlgn3 is not necessary for long-term potentiation. We conclude that while Nlgn1 and Nlgn3 have distinct functions, both are required for intact synaptic transmission in the mouse dentate gyrus. Our results indicate that interactions between neuroligins may play an important role in regulating synaptic transmission and that ASD-related neuroligin mutations may also affect the synaptic availability of other neuroligins.


2021 ◽  
Vol 22 (4) ◽  
pp. 1536
Author(s):  
Pietro Micheli ◽  
Rui Ribeiro ◽  
Alejandro Giorgetti

Inside hippocampal circuits, neuroplasticity events that individual cells may undergo during synaptic transmissions occur in the form of Long-Term Potentiation (LTP) and Long-Term Depression (LTD). The high density of NMDA receptors expressed on the surface of the dendritic CA1 spines confers to hippocampal CA3-CA1 synapses the ability to easily undergo NMDA-mediated LTP and LTD, which is essential for some forms of explicit learning in mammals. Providing a comprehensive kinetic model that can be used for running computer simulations of the synaptic transmission process is currently a major challenge. Here, we propose a compartmentalized kinetic model for CA3-CA1 synaptic transmission. Our major goal was to tune our model in order to predict the functional impact caused by disease associated variants of NMDA receptors related to severe cognitive impairment. Indeed, for variants Glu413Gly and Cys461Phe, our model predicts negative shifts in the glutamate affinity and changes in the kinetic behavior, consistent with experimental data. These results point to the predictive power of this multiscale viewpoint, which aims to integrate the quantitative kinetic description of large interaction networks typical of system biology approaches with a focus on the quality of a few, key, molecular interactions typical of structural biology ones.


2000 ◽  
Vol 39 (6) ◽  
pp. 952-960 ◽  
Author(s):  
Henry Matthies ◽  
Helmut Schroeder ◽  
Axel Becker ◽  
Horace Loh ◽  
Volker Höllt ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document