Intrinsic Firing Patterns and Whisker-Evoked Synaptic Responses of Neurons in the Rat Barrel Cortex

1999 ◽  
Vol 81 (3) ◽  
pp. 1171-1183 ◽  
Author(s):  
J. Julius Zhu ◽  
Barry W. Connors

Intrinsic firing patterns and whisker-evoked synaptic responses of neurons in the rat barrel cortex. We have used whole cell recording in the anesthetized rat to study whisker-evoked synaptic and spiking responses of single neurons in the barrel cortex. On the basis of their intrinsic firing patterns, neurons could be classified as either regular-spiking (RS) cells, intrinsically burst-spiking (IB) cells, or fast-spiking (FS) cells. Some recordings responded to current injection with a complex spike pattern characteristic of apical dendrites. All cell types had high rates of spontaneous postsynaptic potentials, both excitatory (EPSPs) and inhibitory (IPSPs). Some spontaneous EPSPs reached threshold, and these typically elicited only single action potentials in RS cells, bursts of action potentials in FS cells and IB cells, and a small, fast spike or a complex spike in dendrites. Deflection of single whiskers evoked a fast initial EPSP, a prolonged IPSP, and delayed EPSPs in all cell types. The intrinsic firing pattern of cells predicted their short-latency whisker-evoked spiking patterns. All cell types responded best to one or, occasionally, two primary whiskers, but typically 6–15 surrounding whiskers also generated significant synaptic responses. The initial EPSP had a relatively fixed amplitude and latency, and its amplitude in response to first-order surrounding whiskers was ∼55% of that induced by the primary whisker. Second- and third-order surrounding whiskers evoked responses of ∼27 and 12%, respectively. The latency of the initial EPSP was shortest for the primary whiskers, longer for surrounding whiskers, and varied with the neurons’ depth below the pia. EPSP latency was shortest in the granular layer, longer in supragranular layers, and longest in infragranular layers. The receptive field size, defined as the total number of fast EPSP-inducing whiskers, was independent of each cell’s intrinsic firing type, its subpial depth, or the whisker stimulus parameters. On average, receptive fields included >10 whiskers. Our results show that single neurons integrate rapid synaptic responses from a large proportion of the mystacial vibrissae, and suggest that the whisker-evoked responses of barrel neurons are a function of both synaptic inputs and intrinsic membrane properties.

2015 ◽  
Vol 112 (45) ◽  
pp. 14072-14077 ◽  
Author(s):  
Robert Egger ◽  
Arno C. Schmitt ◽  
Damian J. Wallace ◽  
Bert Sakmann ◽  
Marcel Oberlaender ◽  
...  

Cortical inhibitory interneurons (INs) are subdivided into a variety of morphologically and functionally specialized cell types. How the respective specific properties translate into mechanisms that regulate sensory-evoked responses of pyramidal neurons (PNs) remains unknown. Here, we investigated how INs located in cortical layer 1 (L1) of rat barrel cortex affect whisker-evoked responses of L2 PNs. To do so we combined in vivo electrophysiology and morphological reconstructions with computational modeling. We show that whisker-evoked membrane depolarization in L2 PNs arises from highly specialized spatiotemporal synaptic input patterns. Temporally L1 INs and L2–5 PNs provide near synchronous synaptic input. Spatially synaptic contacts from L1 INs target distal apical tuft dendrites, whereas PNs primarily innervate basal and proximal apical dendrites. Simulations of such constrained synaptic input patterns predicted that inactivation of L1 INs increases trial-to-trial variability of whisker-evoked responses in L2 PNs. The in silico predictions were confirmed in vivo by L1-specific pharmacological manipulations. We present a mechanism—consistent with the theory of distal dendritic shunting—that can regulate the robustness of sensory-evoked responses in PNs without affecting response amplitude or latency.


1991 ◽  
Vol 66 (6) ◽  
pp. 2034-2040 ◽  
Author(s):  
L. R. Silva ◽  
M. J. Gutnick ◽  
B. W. Connors

1. Reeler is an autosomal recessive mutation of mice that alters neuronal migration during development, yielding a general inversion of the laminae in the neocortex. We recorded in vitro from slices of normal and reeler neocortex to study the influence of neuron position and shape on membrane properties and synaptic responses. 2. The intrinsic firing patterns, action-potential shapes, resting membrane potentials, input resistances, and evoked excitatory postsynaptic potentials (EPSPs) and inhibitory postsynaptic potentials (IPSPs) did not differ between reelers and controls when data were grouped. 3. The depth distribution of intrinsic firing patterns was inverted in the reeler: intrinsically bursting (IB) neurons were found only in layer 5 in the normal mouse, but they were found exclusively in supragranular layers of the reeler cortex. 4. The spatial distribution of synaptic responses in the reeler was also inverted: very prominent IPSPs were characteristic of upper layer neurons in the normal mouse, but in the reeler similar inhibitory responses were observed predominantly in deep infragranular layers. 5. Dye injections in reeler pyramidal neurons revealed atypical morphologies, including distorted apical dendrites and cell inversion. 6. The data imply that cortical neurons develop the membrane and synaptic properties appropriate to their function, despite being malformed and mispositioned.


2003 ◽  
Vol 89 (5) ◽  
pp. 2854-2867 ◽  
Author(s):  
Joshua C. Brumberg ◽  
Farid Hamzei-Sichani ◽  
Rafael Yuste

Layer VI is the origin of the massive feedback connection from the cortex to the thalamus, yet its complement of cell types and their connections is poorly understood. The physiological and morphological properties of corticofugal neurons of layer VI of mouse primary visual cortex were investigated in slices loaded with the Ca2+indicator fura-2AM. To identify corticofugal neurons, electrical stimulation of the white matter (WM) was done in conjunction with calcium imaging to detect neurons that responded with changes in intracellular Ca2+ concentrations in response to the stimulation. Subsequent whole cell recordings confirmed that they discharged antidromic action potentials after WM stimulation. Antidromically activated neurons were more excitable and had different spiking properties than neighboring nonantidromic neurons, although both groups had similar input resistances. Furthermore, antidromic neurons possessed narrower action potentials and smaller afterhyperpolarizations. Additionally, three-dimensional reconstructions indicated that antidromically activated neurons had a distinct morphology with longer apical dendrites and fewer nonprimary dendrites than nonantidromic cells. To identify the antidromic neurons, rhodamine microspheres were injected into the dorsal lateral geniculate nucleus of the thalamus and allowed to retrogradely transport back to the somata of the layer VI cortico-geniculate neurons. Physiological and anatomical analysis indicated that most antidromic neurons were likely to be cortico-geniculate neurons. Our results show that cortico-thalamic neurons represent a specific functional and morphological class of layer VI neurons.


1983 ◽  
Vol 50 (5) ◽  
pp. 1197-1219 ◽  
Author(s):  
T. W. Berger ◽  
P. C. Rinaldi ◽  
D. J. Weisz ◽  
R. F. Thompson

Extracellular single-unit recordings from neurons in the CA1 and CA3 regions of the dorsal hippocampus were monitored during classical conditioning of the rabbit nictitating membrane response. Neurons were classified as different cell types using response to fornix stimulation (i.e., antidromic or orthodromic activation) and spontaneous firing characteristics as criteria. Results showed that hippocampal pyramidal neurons exhibit learning-related neural plasticity that develops gradually over the course of classical conditioning. The learning-dependent pyramidal cell response is characterized by an increase in frequency of firing within conditioning trials and a within-trial pattern of discharge that correlates strongly with amplitude-time course of the behavioral response. In contrast, pyramidal cell activity recorded from control animals given unpaired presentations of the conditioned and unconditioned stimulus (CS and UCS) does not show enhanced discharge rates with repeated stimulation. Previous studies of hippocampal cellular electrophysiology have described what has been termed a theta-cell (19-21, 45), the activity of which correlates with slow-wave theta rhythm generated in the hippocampus. Neurons classified as theta-cells in the present study exhibit responses during conditioning that are distinctly different than pyramidal cells. theta-Cells respond during paired conditioning trials with a rhythmic bursting; the between-burst interval occurs at or near 8 Hz. In addition, two different types of theta-cells were distinguishable. One type of theta-cell increases firing frequency above pretrial levels while displaying the theta bursting pattern. The other type decreases firing frequency below pretrial rates while showing a theta-locked discharge. In addition to pyramidal and theta-neurons, several other cell types recorded in or near the pyramidal cell layer could be distinguished. One cell type was distinctive in that it could be activated with a short, invariant latency following fornix stimulation, but spontaneous action potentials of such neurons could not be collided with fornix shock-induced action potentials. These neurons exhibit a different profile of spontaneous firing characteristics than those of antidromically identified pyramidal cells. Nevertheless, neurons in this noncollidable category display the same learning-dependent response as pyramidal cells. It is suggested that the noncollidable neurons represent a subpopulation of pyramidal cells that do not project an axon via the fornix but project, instead, to other limbic cortical regions.(ABSTRACT TRUNCATED AT 400 WORDS)


1974 ◽  
Vol 60 (3) ◽  
pp. 653-671
Author(s):  
D. B. SATTELLE

1. A mean resting potential of -53.3 (S.D. ±2.7) mV has been obtained for 23 neurones of the parietal and visceral ganglia of Limnaea stagnalis (L.). Changes in the resting potential of between 28 and 43 mV accompany tenfold changes in [K+0]. A modified constant-field equation accounts for the behaviour of most cells over the range of external potassium concentrations from 0-5 to 10.o mM/1. Mean values have been estimated for [K+1, 56.2 (S.D.± 9-0) mM/1 and PNa/PK, 0-117 (S.D.±0-028). 2. Investigations on the ionic basis of action potential generation have revealed two cell types which can be distinguished according to the behaviour of their action potentials in sodium-free Ringer. Sodium-sensitive cells are unable to support action potentials for more than 8-10 min in the absence of sodium. Sodium slopes of between 29 and 37 mV per decade change in [Na+0] have been found for these cells. Tetrodotoxin (5 x 10-5 M) usually blocks action potentials in these neurones. Calcium-free inger produces a marked reduction in the overshoot potential and calcium slopes of about 18 mV per decade change in [Ca2+o] are found. Manganous chloride only partially reduces the action potential overshoot in these cells at concentrations of 10 mM/l. 3. Sodium-insensitive neurones maintain action potentials in the absence of external sodium. Stimulation only slightly reduces the amplitude of the action potential under these conditions and such cells are readily accessible to potassium ions in the bathing medium. A calcium-slope of 29 mV per decade change in [Ca2+o] has been observed in these cells in the absence of external sodium. 4. It is concluded that both sodium and calcium ions can be involved in the generation of the action potential in neurones of Limnaea stagnate, their relative contribution varying in different cells.


2018 ◽  
Vol 120 (6) ◽  
pp. 3063-3076 ◽  
Author(s):  
Camilo Ferrer ◽  
Helen Hsieh ◽  
Lonnie P. Wollmuth

Parvalbumin-expressing (PV) GABAergic interneurons regulate local circuit dynamics. In terms of the excitation driving PV interneuron activity, the N-methyl-d-aspartate receptor (NMDAR)-mediated component onto PV interneurons tends to be smaller than that onto pyramidal neurons but makes a significant contribution to their physiology and development. In the visual cortex, PV interneurons mature during the critical period. We hypothesize that during the critical period, the NMDAR-mediated signaling and functional properties of glutamatergic synapses onto PV interneurons are developmentally regulated. We therefore compared the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR)- and NMDAR-mediated synaptic responses before (postnatal days 15–20, P15–P20), during (P25–P40), and after (P50–P60) the visual critical period. AMPAR miniature excitatory postsynaptic currents (mEPSCs) showed a developmental decrease in frequency, whereas NMDAR mEPSCs were absent or showed extremely low frequencies throughout development. For evoked responses, we consistently saw a NMDAR-mediated component, suggesting pre- or postsynaptic differences between evoked and spontaneous neurotransmission. Evoked responses showed input-specific developmental changes. For intralaminar inputs, the NMDAR-mediated component significantly decreased with development. This resulted in adult intralaminar inputs almost exclusively mediated by AMPARs, suited for the computation of synaptic inputs with precise timing, and likely having NMDAR-independent forms of plasticity. In contrast, interlaminar inputs maintained a stable NMDAR-mediated component throughout development but had a shift in the AMPAR paired-pulse ratio from depression to facilitation. Adult interlaminar inputs with facilitating AMPAR responses and a substantial NMDAR component would favor temporal integration of synaptic responses and could be modulated by NMDAR-dependent forms of plasticity. NEW & NOTEWORTHY We show for the first time input-specific developmental changes in the N-methyl-d-aspartate receptor component and short-term plasticity of the excitatory drive onto layers 2/3 parvalbumin-expressing (PV) interneurons in the visual cortex during the critical period. These developmental changes would lead to functionally distinct adult intralaminar and interlaminar glutamatergic inputs that would engage PV interneuron-mediated inhibition differently.


1992 ◽  
Vol 9 (3-4) ◽  
pp. 279-290 ◽  
Author(s):  
Dennis M. Dacey ◽  
Sarah Brace

AbstractIntracellular injections of Neurobiotin were used to determine whether the major ganglion cell classes of the macaque monkey retina, the magnocellular-projecting parasol, and the parvocellular-projecting midget cells showed evidence of cellular coupling similar to that recently described for cat retinal ganglion cells. Ganglion cells were labeled with the fluorescent dye acridine orange in an in vitro, isolated retina preparation and were selectively targeted for intracellular injection under direct microscopic control. The macaque midget cells, like the beta cells of the cat's retina, showed no evidence of tracer coupling when injected with Neurobiotin. By contrast, Neurobiotin-filled parasol cells, like cat alpha cells, showed a distinct pattern of tracer coupling to each other (homotypic coupling) and to amacrine cells (heterotypic coupling).In instances of homotypic coupling, the injected parasol cell was surrounded by a regular array of 3–6 neighboring parasol cells. The somata and proximal dendrites of these tracer-coupled cells were lightly labeled and appeared to costratify with the injected cell. Analysis of the nearest-neighbor distances for the parasol cell clusters showed that dendritic-field overlap remained constant as dendritic-field size increased from 100–400 μm in diameter.At least two amacrine cell types showed tracer coupling to parasol cells. One amacrine type had a small soma and thin, sparsely branching dendrites that extended for 1–2 mm in the inner plexiform layer. A second amacrine type had a relatively large soma, thick main dendrites, and distinct, axon-like processes that extended for at least 2–3 mm in the inner plexiform layer. The main dendrites of the large amacrine cells were closely apposed to the dendrites of parasol cells and may be the site of Neurobiotin transfer between the two cell types. We suggest that the tracer coupling between neighboring parasol cells takes place indirectly via the dendrites of the large amacrine cells and provides a mechanism, absent in midget cells, for increasing parasol cell receptive-field size and luminance contrast sensitivity.


2013 ◽  
Vol 33 (7) ◽  
pp. 1115-1126 ◽  
Author(s):  
Basavaraju G Sanganahalli ◽  
Peter Herman ◽  
Fahmeed Hyder ◽  
Sridhar S Kannurpatti

Local calcium (Ca2 +) changes regulate central nervous system metabolism and communication integrated by subcellular processes including mitochondrial Ca2 + uptake. Mitochondria take up Ca2 + through the calcium uniporter (mCU) aided by cytoplasmic microdomains of high Ca2 +. Known only in vitro, the in vivo impact of mCU activity may reveal Ca2 + -mediated roles of mitochondria in brain signaling and metabolism. From in vitro studies of mitochondrial Ca2 + sequestration and cycling in various cell types of the central nervous system, we evaluated ranges of spontaneous and activity-induced Ca2 + distributions in multiple subcellular compartments in vivo. We hypothesized that inhibiting (or enhancing) mCU activity would attenuate (or augment) cortical neuronal activity as well as activity-induced hemodynamic responses in an overall cytoplasmic and mitochondrial Ca2 + -dependent manner. Spontaneous and sensory-evoked cortical activities were measured by extracellular electrophysiology complemented with dynamic mapping of blood oxygen level dependence and cerebral blood flow. Calcium uniporter activity was inhibited and enhanced pharmacologically, and its impact on the multimodal measures were analyzed in an integrated manner. Ru360, an mCU inhibitor, reduced all stimulus-evoked responses, whereas Kaempferol, an mCU enhancer, augmented all evoked responses. Collectively, the results confirm aforementioned hypotheses and support the Ca2 + uptake-mediated integrative role of in vivo mitochondria on neocortical activity.


1995 ◽  
Vol 74 (2) ◽  
pp. 751-762 ◽  
Author(s):  
G. Schoenbaum ◽  
H. Eichenbaum

1. Neural activity was recorded from the orbitofrontal cortex (OF) of rats performing an eight-odor discrimination task that included predictable associations between particular odor pairs. A modified linear discriminant analysis was employed to characterize the population response in each trial of the task as a point in an N-dimensional activity space with the firing rate of each cell in the population represented on one of the N dimensions. The ability of the ensemble to discriminate among conditions of a variable was reflected in the tendency of population responses to cluster together in this activity space for repetitions of a given condition. We assessed coding of several variables describing the period of odor sampling, focusing on aspects of current, past, and future events reflected in single-neuron firing patterns, in ensembles composed of 22-138 cells active during the period when the rats sampled the discriminative stimulus in each trial. 2. OF ensembles performed well at discriminating variables with relevance to task demands represented in single-neuron firing patterns, specifically the physical attributes and assigned reward contingency of the current odor as well as the expectation of reward in the following trial that could be inferred from the predictable associations between particular pairs of odors. OF ensembles were able to correctly identify the identity and assigned reward contingency of the current odor in up to 52% (chance = 12.5%) and 99% (chance = 50%) of all trials, respectively, such that the observed behavioral performance required a population of 5,364 odor-responsive cells in the case of odor identity and only 40 cells in the case of valence. Expectations regarding upcoming rewards based on both assigned response contingency and associations between particular pairs of odors were correctly classified in up to 67% (chance = 20%) of all trials such that the observed level of behavioral performance required a population of 3,169 cells. 3. Other information represented in the single-neuron firing patterns, such as the identity and reward contingency of the preceding odor and specific odor-odor associations, was poorly encoded by OF ensembles. Thus neural ensembles in OF may represent only some of the information reflected in single-neuron activity. Stable coding of only the most useful and relevant information by the ensemble might emerge from the tuning properties of single neurons under the influence of the task at hand, producing in the well-trained animal the observed pattern of broad and diverse coding by single neurons and selective, task-relevant coding by neural ensembles in OF.


Sign in / Sign up

Export Citation Format

Share Document