Light-Evoked Responses of Bipolar Cells in a Mammalian Retina

2000 ◽  
Vol 83 (4) ◽  
pp. 1817-1829 ◽  
Author(s):  
Thomas Euler ◽  
Richard H. Masland

We recorded light-evoked responses from rod and cone bipolar cells using patch-clamp techniques in a slice preparation of the rat retina. Rod bipolar cells responded to light with a sustained depolarization (on response) followed at light offset by a slight hyperpolarization. on and off cone bipolar cells were encountered, both with diverse temporal properties. The responses of rod bipolar cells were composed primarily of two components, a nonspecific cation current and a chloride current. The chloride current was reduced greatly in axotomized cells and could be suppressed by coapplication of the GABAA antagonist bicuculline and the GABAC antagonist (1,2,5,6-tetrahydropyridine-4-yl)methylphosphinic acid. This suggests that it largely reflects feedback from GABAergic amacrine cells. The response latency of intact rod bipolar cells was shorter than that of the axotomized cells, and the sensitivity curve covered more than twice the dynamic range. Application of the GABA receptor antagonists partially mimicked the effects of axotomy. These findings suggest that functional properties of the axon terminal system—notably synaptic feedback from amacrine cells—play an important role in defining the response properties of mammalian bipolar cells.

2006 ◽  
Vol 23 (1) ◽  
pp. 127-135 ◽  
Author(s):  
GUO-YONG WANG

Light decrements are mediated by two distinct groups of rod pathways in the dark-adapted retina that can be differentiated on the basis of their sensitivity to the glutamate agonist DL-2-amino-phosphonobutyric (APB). By means of the APB sensitive pathway, rods transmit light decrementsviarod bipolar cells to AII amacrine cells, then to Off cone bipolar cells, which in turn innervate the dendrites of Off ganglion cells. APB hyperpolarizes rod bipolar cells, thus blocking this rod pathway. With APB insensitive pathways, rods either directly synapse onto Off cone bipolar cells, or rods pass light decrement signal to cones by gap junctions. In the present study, whole-cell patch-clamp recordings were made from ganglion cells in the dark-adapted mouse retina to investigate the functional properties of APB sensitive and insensitive rod pathways. The results revealed several clear-cut differences between the APB sensitive and APB insensitive rod pathways. The latency of Off responses to a flashing spot of light was significantly shorter for the APB insensitive pathways than those for the APB sensitive pathway. Moreover, Off responses of the APB insensitive pathways were found to be capable of following substantially higher stimulus frequencies. Nitric oxide was found to selectively block Off responses in the APB sensitive rod pathway. Collectively, these results provide evidence that the APB sensitive and insensitive rod pathways can convey different types of information signaling light decrements in the dark-adapted retina.


2002 ◽  
Vol 19 (5) ◽  
pp. 549-562 ◽  
Author(s):  
BOZENA FYK-KOLODZIEJ ◽  
WENHUI CAI ◽  
ROBERTA G. POURCHO

Immunocytochemical localization was carried out for five isoforms of protein kinase C (PKC) in the cat retina. In common with other mammalian species, PKCα was found in rod bipolar cells. Staining was also seen in a small population of cone bipolar cells with axon terminals ramifying near the middle of the inner plexiform layer (IPL). PKCβI was localized to rod bipolar cells, one class of cone bipolar cell, and numerous amacrine and displaced amacrine cells. Staining for PKCβII was seen in three types of cone bipolar cells as well as in amacrine and ganglion cells. Immunoreactivity for both PKCε and PKCζ was found in rod bipolar cells; PKCε was also seen in a population of cone bipolar cells and a few amacrine and ganglion cells whereas PKCζ was found in all ganglion cells. Double-label immunofluorescence studies showed that dendrites of the two PKCβII-positive OFF-cone bipolar cells exhibit immmunoreactivity for the kainate-selective glutamate receptor GluR5. The third PKCβII cone bipolar is an ON-type cell and did not stain for GluR5. The retinal distribution of these isoforms of PKC is consistent with a role in modulation of various aspects of neurotransmission including synaptic vesicle release and regulation of receptor molecules.


1988 ◽  
Vol 1 (2) ◽  
pp. 181-188 ◽  
Author(s):  
William J. Brunken ◽  
Nigel W. Daw

AbstractSelective agonists and antagonists were employed to determine the role of indoleaminergic amacrine cells in the generation of the light-evoked responses and spontaneous activity of direction and orientation selective cells. Perfusion with 5-HT2 antagonists reduced the spontaneous activity and both the leading and trailing edge responses of ON/OFF direction selective cells. 5-HT1a agonists had a similar effect on this class of cell, namely, a reduction of light-evoked and spontaneous activity. Results from ON-center and OFF-center orientation selective cells were consistent with those obtained from direction selective cells in that no disruption of direction or orientation selectivity was observed during perfusion of these drugs. These data suggest that the indoleaminergic cells are not directly involved in the generation of the trigger features of complex ganglion cells, but may be facilitating synaptic transmission in the inner retina. This function is discussed relative to the connectivity of the rod bipolar cells and the putative indoleaminergic amacrine cells. The similarity of the effects of 5-HT1a agonists and 5-HT2 antagonists supports the hypothesis, developed during our prior studies of brisk ganglion cells, that these two receptor classes mediate antagonistic processes in the target neurons.


2016 ◽  
Vol 115 (1) ◽  
pp. 389-403 ◽  
Author(s):  
Yifan Zhou ◽  
Barbora Tencerová ◽  
Espen Hartveit ◽  
Margaret L. Veruki

At many glutamatergic synapses, non- N-methyl-d-aspartate (NMDA) and NMDA receptors are coexpressed postsynaptically. In the mammalian retina, glutamatergic rod bipolar cells are presynaptic to two rod amacrine cells (AII and A17) that constitute dyad postsynaptic partners opposite each presynaptic active zone. Whereas there is strong evidence for expression of non-NMDA receptors by both AII and A17 amacrines, the expression of NMDA receptors by the pre- and postsynaptic neurons in this microcircuit has not been resolved. In this study, using patch-clamp recording from visually identified cells in rat retinal slices, we investigated the expression and functional properties of NMDA receptors in these cells with a combination of pharmacological and biophysical methods. Pressure application of NMDA did not evoke a response in rod bipolar cells, but for both AII and A17 amacrines, NMDA evoked responses that were blocked by a competitive antagonist (CPP) applied extracellularly and an open channel blocker (MK-801) applied intracellularly. NMDA-evoked responses also displayed strong Mg2+-dependent voltage block and were independent of gap junction coupling. With low-frequency application (60-s intervals), NMDA-evoked responses remained stable for up to 50 min, but with higher-frequency stimulation (10- to 20-s intervals), NMDA responses were strongly and reversibly suppressed. We observed strong potentiation when NMDA was applied in nominally Ca2+-free extracellular solution, potentially reflecting Ca2+-dependent NMDA receptor inactivation. These results indicate that expression of functional (i.e., conductance-increasing) NMDA receptors is common to both AII and A17 amacrine cells and suggest that these receptors could play an important role for synaptic signaling, integration, or plasticity in the rod pathway.


2004 ◽  
Vol 21 (6) ◽  
pp. 913-924 ◽  
Author(s):  
AMY BERNTSON ◽  
ROBERT G. SMITH ◽  
W. ROWLAND TAYLOR

Light-evoked currents were recorded from rod bipolar cells in a dark-adapted mouse retinal slice preparation. Low-intensity light steps evoked a sustained inward current. Saturating light steps evoked an inward current with an initial peak that inactivated, with a time constant of about 60–70 ms, to a steady plateau level that was maintained for the duration of the step. The inactivation was strongest at hyperpolarized potentials, and absent at positive potentials. Inactivation was mediated by an increase in the intracellular calcium concentration, as it was abolished in cells dialyzed with 10 mM BAPTA, but was present in cells dialyzed with 1 mM EGTA. Moreover, responses to brief flashes of light were broader in the presence of intracellular BAPTA indicating that the calcium feedback actively shapes the time course of the light responses. Recovery from inactivation observed for paired-pulse stimuli occurred with a time constant of about 375 ms. Calcium feedback could act to increase the dynamic range of the bipolar cells, and to reduce variability in the amplitude and duration of the single-photon signal. This may be important for nonlinear processing at downstream sites of convergence from rod bipolar cells to AII amacrine cells. A model in which intracellular calcium rapidly binds to the light-gated channel and reduces the conductance can account for the results.


1996 ◽  
Vol 76 (1) ◽  
pp. 401-422 ◽  
Author(s):  
E. Hartveit

1. With the use of the whole cell voltage-clamp technique, I have recorded the current responses to ionotropic glutamate receptor agonists of rod bipolar cells in vertical slices of rat retina. Rod bipolar cells constitute a single population of cells and were visualized by infrared differential interference contrast video microscopy. They were targeted by the position of their cell bodies in the inner nuclear layer and, after recording, were visualized in their entirety by labeling with the fluorescent dye Lucifer yellow, which was included in the recording pipette. To study current-voltage relationships of evoked currents, voltage-gated potassium currents were blocked by including Cs+ and tetraethylammonium+ in the recording pipette. 2. Pressure application of the non-N-methyl-D-aspartate (non-NMDA) receptor agonists kainate and (S)-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) from puffer pipettes evoked a long-latency conductance increase selective for chloride ions. When the intracellular chloride concentration was increased, the reversal potential changed, corresponding to the change in equilibrium potential for chloride. The response was evoked in the presence of 5 mM Co2+ and nominally O mM Ca2+ in the extracellular solution, presumably blocking all external Ca2(+)-dependent release of neurotransmitter. 3. The long latency of kainate-evoked currents in bipolar cells contrasted with the short-latency currents evoked by gamma-aminobutyric acid (GABA) and glycine in rod bipolar cells and by kainate in amacrine cells. 4. Application of NMDA evoked no response in rod bipolar cells. 5. Coapplication of AMPA with cyclothiazide, a blocker of agonist-evoked desensitization of AMPA receptors, enhanced the conductance increase compared with application of AMPA alone. Coapplication of the non-NMDA receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione blocked the response to kainate and AMPA, indicating that the response was mediated by conventional ionotropic glutamate receptors. 6. The conductance increase evoked by non-NMDA receptor agonists could not be blocked by a combination of 100 microM picrotoxin and 10 microM strychnine. Application of the GABAC receptor antagonist 3-aminopropyl (methyl)phosphinic acid (3-APMPA) strongly reduced the response, and coapplication of 500 microM 3-APMPA and 100 microM picrotoxin completely blocked the response. These results suggested that the conductance increase evoked by non-NMDA receptor agonists was mediated by release of GABA and activation of GABAC receptors, and most likely also GABAA receptors, on rod bipolar cells. 7. Kainate responses like those described above could not be evoked in bipolar cells in which the axon had been cut somewhere along its passage to the inner plexiform layer during the slicing procedure. This suggests that the response was dependent on the integrity of the axon terminal in the inner plexiform layer, known to receive GABAergic synaptic input from amacrine cells. 8. The results indicate that ionotropic glutamate receptors are not involved in mediating synaptic input from photoreceptors to rod bipolar cells and that an unconventional mechanism of GABA release from amacrine cells might operate in the inner plexiform layer.


2009 ◽  
Vol 101 (5) ◽  
pp. 2339-2347 ◽  
Author(s):  
Margaret Lin Veruki ◽  
Espen Hartveit

Gap junction channels constitute specialized intercellular contacts that can serve as electrical synapses. In the rod pathway of the retina, electrical synapses between AII amacrine cells express connexin 36 (Cx36) and electrical synapses between AII amacrines and on-cone bipolar cells express Cx36 on the amacrine side and Cx36 or Cx45 on the bipolar side. For physiological investigations of the properties and functions of these electrical synapses, it is highly desirable to have access to potent pharmacological blockers with selective and reversible action. Here we use dual whole cell voltage-clamp recordings of pairs of AII amacrine cells and pairs of AII amacrine and on-cone bipolar cells in rat retinal slices to directly measure the junctional conductance ( Gj) between electrically coupled cells and to study the effect of the drug meclofenamic acid (MFA) on Gj. Consistent with previous tracer coupling studies, we found that MFA reversibly blocked the electrical synapse currents in a concentration-dependent manner, with complete block at 100 μM. Whereas MFA evoked a detectable decrease in Gj within minutes of application, the time to complete block of Gj was considerably longer, typically 20–40 min. After washout, Gj recovered to 20–90% of the control level, but the time to maximum recovery was typically >1 h. These results suggest that MFA can be a useful drug to investigate the physiological functions of electrical synapses in the rod pathway, but that the slow kinetics of block and reversal might compromise interpretation of the results and that explicit monitoring of Gj is desirable.


2002 ◽  
Vol 87 (1) ◽  
pp. 250-256 ◽  
Author(s):  
D.-W. Shen ◽  
M. H. Higgs ◽  
D. Salvay ◽  
J. W. Olney ◽  
P. D. Lukasiewicz ◽  
...  

Evidence from toxicological studies suggested that an ionotropic GABA receptor of novel pharmacology (picrotoxin-insensitive, bicuculline-sensitive) exists in the chick embryo retina. In this report, we provide direct morphological and electrophysiological evidence for the existence of such an iGABA receptor. Chick embryo retinas (14–16 days old) incubated in the presence of kainic acid showed pronounced histopathology in all retinal layers. Maximal protection from this toxicity required a combination of bicuculline and picrotoxin. Individual application of the antagonists indicated that a picrotoxin-insensitive, bicuculline-sensitive GABA receptor is likely to be present on ganglion and amacrine, but not bipolar, cells. GABA currents in embryonic and mature chicken retinal neurons were measured by whole cell patch clamp. GABA was puffed at the dendritic processes in the IPL. Picrotoxin (500 μM, in the bath) eliminated all (>95%) the GABA current in the majority of ganglion and amacrine cells tested, but many cells possessed a substantial picrotoxin-insensitive component. This current was eliminated by bicuculline (200 μM). This current was not a transporter-associated current, since it was not altered by GABA transport blockers or sodium removal. The current–voltage relation was linear and reversed near E Cl, as expected for a ligand-gated chloride current. Both pentobarbital and lorazepam enhanced the picrotoxin-insensitive current. We conclude that chicken retinal ganglion and amacrine cells express a GABA receptor that is GABA-A–like, in that it can be blocked by bicuculline, and positively modulated by barbiturates and benzodiazepines, but is insensitive to the noncompetitive blocker picrotoxin. Understanding the molecular properties of this receptor will be important for understanding both physiological GABA neurotransmission and the pathology of GABA receptor overactivation.


2018 ◽  
Vol 120 (2) ◽  
pp. 867-879 ◽  
Author(s):  
Michael D. Flood ◽  
Johnnie M. Moore-Dotson ◽  
Erika D. Eggers

Dopamine modulation of retinal signaling has been shown to be an important part of retinal adaptation to increased background light levels, but the role of dopamine modulation of retinal inhibition is not clear. We previously showed that light adaptation causes a large reduction in inhibition to rod bipolar cells, potentially to match the decrease in excitation after rod saturation. In this study, we determined how dopamine D1 receptors in the inner retina contribute to this modulation. We found that D1 receptor activation significantly decreased the magnitude of inhibitory light responses from rod bipolar cells, whereas D1 receptor blockade during light adaptation partially prevented this decline. To determine what mechanisms were involved in the modulation of inhibitory light responses, we measured the effect of D1 receptor activation on spontaneous currents and currents evoked from electrically stimulating amacrine cell inputs to rod bipolar cells. D1 receptor activation decreased the frequency of spontaneous inhibition with no change in event amplitudes, suggesting a presynaptic change in amacrine cell activity in agreement with previous reports that rod bipolar cells lack D1 receptors. Additionally, we found that D1 receptor activation reduced the amplitude of electrically evoked responses, showing that D1 receptors can modulate amacrine cells directly. Our results suggest that D1 receptor activation can replicate a large portion but not all of the effects of light adaptation, likely by modulating release from amacrine cells onto rod bipolar cells. NEW & NOTEWORTHY We demonstrated a new aspect of dopaminergic signaling that is involved in mediating light adaptation of retinal inhibition. This D1 receptor-dependent mechanism likely acts through receptors located directly on amacrine cells, in addition to its potential role in modulating the strength of serial inhibition between amacrine cells. Our results also suggest that another D2/D4 receptor-dependent or dopamine-independent mechanism must also be involved in light adaptation of inhibition to rod bipolar cells.


1990 ◽  
Vol 63 (4) ◽  
pp. 860-876 ◽  
Author(s):  
A. Karschin ◽  
H. Wassle

1. Bipolar cells were isolated from adult rat retinas after enzymatic and mechanical treatment. The cells could be unequivocally identified from their morphology because of high retention of their axon and dendritic processes after isolation. 2. Protein kinase C (PKC) immunoreactivity performed on sections of the rat retina labeled rod bipolar cells and a few amacrine cells. Virtually all bipolar cells in the dissociates expressed PKC immunoreactivity and were, therefore, rod bipolar cells. 3. Rod bipolar cells were examined with the tight-seal whole-cell and excised-patch recording techniques. Resting potentials of the isolated cells recorded under current-clamp conditions showed a broad unimodal distribution around -37 mV. 4. Membrane depolarization from a holding potential of -90 mV resulted in an outward current. A fast sodium inward current was not observed. Membrane hyperpolarization from a holding potential of -40 mV activated an inwardly rectifying current. 5. gamma-Aminobutyric acid (GABA) and glycine, the putative retinal neurotransmitters that mediate the bipolar cells' receptive field surround in vivo, activated chloride conductances in almost all isolated bipolar cells. GABA- and glycine-evoked currents were both desensitizing and could be antagonized by the classical blockers bicuculline, picrotoxin, and strychnine, respectively. 6. Pressure application of the drugs from fine microcapillaries to various parts of the isolated cells suggests a high GABA sensitivity at the axonal endings compared with either the somatic or dendritic region. A similar distribution was not found for glycine. On the contrary, glycine-induced single-channel events with main conductances of 52 and 34 pS were recorded from membrane patches excised from the cells' somata. 7. Conductances induced by glutamate and several excitatory amino acid agonists were observed in a number of the cells. Application of the glutamate agonist 2-amino-4-phosphonobutyric acid (APB) induced an inward current at negative holding potentials associated with the opening of ion channels. In only 5 of 93 cells, APB closed ion channels, leading to a decrease in membrane conductance.


Sign in / Sign up

Export Citation Format

Share Document