ventromedial medulla
Recently Published Documents


TOTAL DOCUMENTS

363
(FIVE YEARS 45)

H-INDEX

53
(FIVE YEARS 3)

2022 ◽  
Vol 23 (1) ◽  
Author(s):  
Tiffani J. Mungoven ◽  
Kasia K. Marciszewski ◽  
Vaughan G. Macefield ◽  
Paul M. Macey ◽  
Luke A. Henderson ◽  
...  

Abstract Background The precise underlying mechanisms of migraine remain unknown. Although we have previously shown acute orofacial pain evoked changes within the brainstem of individuals with migraine, we do not know if these brainstem alterations are driven by changes in higher cortical regions. The aim of this investigation is to extend our previous investigation to determine if higher brain centers display altered activation patterns and connectivity in migraineurs during acute orofacial noxious stimuli. Methods Functional magnetic resonance imaging was performed in 29 healthy controls and 25 migraineurs during the interictal and immediately (within 24-h) prior to migraine phases. We assessed activation of higher cortical areas during noxious orofacial heat stimulation using a thermode device and assessed whole scan and pain-related changes in connectivity. Results Despite similar overall pain intensity ratings between all three groups, migraineurs in the group immediately prior to migraine displayed greater activation of the ipsilateral nucleus accumbens, the contralateral ventrolateral prefrontal cortex and two clusters in the dorsolateral prefrontal cortex (dlPFC). Reduced whole scan dlPFC [Z + 44] connectivity with cortical/subcortical and brainstem regions involved in pain modulation such as the putamen and primary motor cortex was demonstrated in migraineurs. Pain-related changes in connectivity of the dlPFC and the hypothalamus immediately prior to migraine was also found to be reduced with brainstem pain modulatory areas such as the rostral ventromedial medulla and dorsolateral pons. Conclusions These data reveal that the modulation of brainstem pain modulatory areas by higher cortical regions may be aberrant during pain and these alterations in this descending pain modulatory pathway manifests exclusively prior to the development of a migraine attack.


Author(s):  
Yo Otsu ◽  
Karin Aubrey

Background and Purpose: Descending projections from neurons in the rostral ventromedial medulla (RVM) make synapses within the superficial dorsal horn of the spinal cord that are involved in acute nociception and the development of chronic pain and itch. In addition, this projection plays an important role in mediating the analgesic effects of opioids. However, our knowledge about the spinal synaptic targets of RVM projections and their modulation by opioids is unknown. Experimental Approach: We used ex vivo optogenetic stimulation of RVM descending fibres and whole-cell patch-clamp recordings from superficial dorsal horn (SDH) neurons to identify the target neurons and to investigate their descending synaptic inputs. Key Results: We demonstrate that SDH neurons are targeted by descending GABA/glycine inhibitory inputs from the RVM, although glycinergic inputs predominate. These SDH neurons had diverse morphological and electrical properties. This inhibitory synapse was presynaptically suppressed by the kappa opioid receptor agonist U69593. By contrast, the mu-opioid receptor agonist DAMGO inhibited only a subset of RVM-SDH synapses, acting both pre- and postsynaptically, while the delta-opioid receptor agonist deltorphin II had little effect. Conclusion and Implications: Developing reliable and effective alternatives to opioid analgesics requires a detailed, mechanistic understanding of how opioids interact with nociceptive circuits. This study selectively and systematically characterises the synaptic connections between RVM projection neurons and their SDH targets to advance our knowledge of how this descending projection is organised and modulated. In addition, it improves our understanding of how opioids alter spinal pathways involved in the sensations of pain and itch.


2021 ◽  
Author(s):  
Tiffani J. Mungoven ◽  
Kasia K. Marciszewski ◽  
Vaughan G. Macefield ◽  
Paul M. Macey ◽  
Luke Henderson ◽  
...  

Abstract BackgroundThe precise underlying mechanisms of migraine remain unknown. Although we have previously shown acute orofacial pain evoked changes within the brainstem of individuals with migraine, we do not know if these brainstem alterations are driven by changes in higher cortical regions. The aim of this investigation is to extend our previous investigation to determine if higher brain centers display altered activation patterns and connectivity in migraineurs during acute orofacial noxious stimuli. MethodsFunctional magnetic resonance imaging was performed in 29 healthy controls and 25 migraineurs during the interictal and immediately (within 24-hours) prior to migraine phases. We assessed activation of higher cortical areas during noxious orofacial stimulation and assessed whole scan and pain-related changes in connectivity. ResultsDespite similar overall pain intensity ratings between all three groups, migraineurs in the group immediately prior to migraine displayed greater activation of the ipsilateral nucleus accumbens, the contralateral ventrolateral prefrontal cortex and two clusters in the dorsolateral prefrontal cortex (dlPFC). Reduced whole scan connectivity dlPFC [Z+44] connectivity with cortical/subcortical and brainstem regions involved in pain modulation such as the putamen and primary motor cortex was demonstrated in migraineurs. Pain-related changes in connectivity of the dlPFC and the hypothalamus immediately prior to migraine was also found to be reduced with brainstem pain modulatory areas such as the rostral ventromedial medulla and dorsolateral pons. ConclusionsThese data reveal that the modulation of brainstem pain modulatory areas by higher cortical regions may be aberrant during pain and these alterations in this descending pain modulatory pathway manifests exclusively prior to the development of a migraine attack.


2021 ◽  
Vol 22 (18) ◽  
pp. 9906
Author(s):  
Yueh-Ling Hsieh ◽  
Chen-Chia Yang ◽  
Nian-Pu Yang

Masticatory myofascial pain (MMP) is one of the most common causes of chronic orofacial pain in patients with temporomandibular disorders. To explore the antinociceptive effects of ultra-low frequency transcutaneous electrical nerve stimulation (ULF-TENS) on alterations of pain-related biochemicals, electrophysiology and jaw-opening movement in an animal model with MMP, a total of 40 rats were randomly and equally assigned to four groups; i.e., animals with MMP receiving either ULF-TENS or sham treatment, as well as those with sham-MMP receiving either ULF-TENS or sham treatment. MMP was induced by electrically stimulated repetitive tetanic contraction of masticatory muscle for 14 days. ULF-TENS was then performed at myofascial trigger points of masticatory muscles for seven days. Measurable outcomes included maximum jaw-opening distance, prevalence of endplate noise (EPN), and immunohistochemistry for substance P (SP) and μ-opiate receptors (MOR) in parabrachial nucleus and c-Fos in rostral ventromedial medulla. There were significant improvements in maximum jaw-opening distance and EPN prevalence after ULF-TENS in animals with MMP. ULF-TENS also significantly reduced SP overexpression, increased MOR expression in parabrachial nucleus, and increased c-Fos expression in rostral ventromedial medulla. ULF-TENS may represent a novel and applicable therapeutic approach for improvement of orofacial pain induced by MMP.


BMC Neurology ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Ye Eun Kim ◽  
Min Kyung Kim ◽  
Sang-il Suh ◽  
Ji Hyun Kim

Abstract Background Recent resting-state fMRI studies demonstrated functional dysconnectivity within the central pain matrix in migraineurs. This study aimed to investigate the spatial distribution and amplitude of low-frequency oscillations (LFOs) using fractional amplitude of low-frequency fluctuation (fALFF) analysis in migraine patients without aura, and to examine relationships between regional LFOs and clinical variables. Methods Resting-state fMRI data were obtained and preprocessed in 44 migraine patients without aura and 31 matched controls. fALFF was computed according to the original method, z-transformed for standardization, and compared between migraineurs and controls. Correlation analysis between regional fALFF and clinical variables was performed in migraineurs as well. Results Compared with controls, migraineurs had significant fALFF increases in bilateral ventral posteromedial (VPM) thalamus and brainstem encompassing rostral ventromedial medulla (RVM) and trigeminocervical complex (TCC). Regional fALFF values of bilateral VPM thalamus and brainstem positively correlated with disease duration, but not with migraine attack frequency or Migraine Disability Assessment Scale score. Conclusions We have provided evidence for abnormal LFOs in the brainstem including RVM/TCC and thalamic VPM nucleus in migraine without aura, implicating trigeminothalamic network oscillations in migraine pathophysiology. Our results suggest that enhanced LFO activity may underpin the interictal trigeminothalamic dysrhythmia that could contribute to the impairments of pain transmission and modulation in migraine. Given our finding of increasing fALFF in relation to increasing disease duration, the observed trigeminothalamic dysrhythmia may indicate either an inherent pathology leading to migraine headaches or a consequence of repeated attacks on the brain.


Sign in / Sign up

Export Citation Format

Share Document