Dorsal horn projection targets of ON and OFF cells in the rostral ventromedial medulla

1995 ◽  
Vol 74 (4) ◽  
pp. 1742-1759 ◽  
Author(s):  
H. L. Fields ◽  
A. Malick ◽  
R. Burstein

1. The rostral ventromedial medulla (RVM) participates in the modulation of nociceptive transmission by spinal cord neurons. Previous anatomic studies have demonstrated that RVM neurons project to laminae I, II, and V of the dorsal horn; laminae VII and VIII of the intermediate and ventral horns; the intermediolateral column; and lamina X. The RVM contains at least three physiologically defined classes of neurons, two of which, the ON and the OFF cells, have been implicated in nociceptive modulation. Because these cells classes are intermingled in the RVM, it has not been possible to determine the spinal laminar projection targets of ON and OFF cells by anatomic methods. Therefore in the current study we employed antidromic microstimulation methods to determine the laminar projections of two of the three classes of RVM neurons, the ON and the OFF cells. 2. In lightly anesthetized (with methohexital sodium) rats, single-unit extracellular recordings were made from 48 RVM neurons that were physiologically characterized as ON (30) or OFF (18) cells. The recording locations of 45 of these neurons were recovered. Thirty-seven were found in the nucleus raphe magnus and eight were located near its dorsal and lateral borders. 3. Thirty-two physiologically identified RVM neurons (18 ON and 14 OFF cells) were antidromically activated from the cervical spinal cord using a monopolar stimulating electrode. The stimulating electrode was moved systematically in the white matter until antidromic activation could be produced with currents of < or = 20 microA (6.1 +/- 0.7 microA, mean +/- SE). The points from which minimum currents were required to antidromically activate the neurons were located mainly in the ipsilateral dorsolateral funiculus (DLF) (27 of 32). In a few cases, lowest antidromic threshold currents were found near the border between the DLF and ventrolateral funiculus (VLF) or, rarely, in the VLF itself. In these cases, the cell recordings were found to be near the dorsal boundary of the RVM. 4. While one electrode was used to stimulate the parent axon in the lateral funiculus, a second was used to explore the gray matter for the presence of collateral branches. The identification of a branch was initially determined by an increase in antidromic latency. At the same rostrocaudal plane of the spinal cord, stimulation of the DLF induced an antidromic spike that invaded the neuron earlier than the antidromic spike elicited by stimulation in the gray matter. Collateral branches were confirmed by establishing that the location of the minimum threshold point for antidromic activation of the neurons from the second electrode was in the gray matter, that the minimum current required to antidromically activate the neuron from that point was too low to activate the parent axon in the DLF, and that a collision occurred between the spikes induced by the two stimulating electrodes. 5. In 17 cases, physiologically identified RVM neurons (10 ON and 7 OFF cells) were antidromically activated from the gray matter of the cervical spinal cord using a current of 8.4 +/- 2.1 (SE) microA. Minimum threshold points for antidromic activation were found in laminae I-II (3 ON and 4 OFF cells), lamina V (5 ON and 6 OFF cells), and regions ventral to the lateral reticulated area (3 ON and 2 OFF cells) of the gray matter. As indicated by these numbers, some neurons were antidromically activated from more than one gray matter region. In general, all OFF cells and 9 of 10 ON cells were antidromically activated from low threshold points in either laminae I-II or lamina V. 6. In six cases, neurons were activated from separate points located in two or three different laminae of the gray matter. Three OFF cells were activated from laminae I-II and V, one OFF cell and one ON cell were activated from lamina V and from more ventral points, and one ON cell was activated from laminae I-II and from points ventral to lamina V.

2017 ◽  
Vol 118 (5) ◽  
pp. 2727-2744 ◽  
Author(s):  
Sergey G. Khasabov ◽  
Patrick Malecha ◽  
Joseph Noack ◽  
Janneta Tabakov ◽  
Glenn J. Giesler ◽  
...  

Neurons in the rostral ventromedial medulla (RVM) project to the spinal cord and are involved in descending modulation of pain. Several studies have shown that activation of neurokinin-1 (NK-1) receptors in the RVM produces hyperalgesia, although the underlying mechanisms are not clear. In parallel studies, we compared behavioral measures of hyperalgesia to electrophysiological responses of nociceptive dorsal horn neurons produced by activation of NK-1 receptors in the RVM. Injection of the selective NK-1 receptor agonist Sar9,Met(O2)11-substance P (SSP) into the RVM produced dose-dependent mechanical and heat hyperalgesia that was blocked by coadministration of the selective NK-1 receptor antagonist L-733,060. In electrophysiological studies, responses evoked by mechanical and heat stimuli were obtained from identified high-threshold (HT) and wide dynamic range (WDR) neurons. Injection of SSP into the RVM enhanced responses of WDR neurons, including identified neurons that project to the parabrachial area, to mechanical and heat stimuli. Since intraplantar injection of capsaicin produces robust hyperalgesia and sensitization of nociceptive spinal neurons, we examined whether this sensitization was dependent on NK-1 receptors in the RVM. Pretreatment with L-733,060 into the RVM blocked the sensitization of dorsal horn neurons produced by capsaicin. c-Fos labeling was used to determine the spatial distribution of dorsal horn neurons that were sensitized by NK-1 receptor activation in the RVM. Consistent with our electrophysiological results, administration of SSP into the RVM increased pinch-evoked c-Fos expression in the dorsal horn. It is suggested that targeting this descending pathway may be effective in reducing persistent pain. NEW & NOTEWORTHY It is known that activation of neurokinin-1 (NK-1) receptors in the rostral ventromedial medulla (RVM), a main output area for descending modulation of pain, produces hyperalgesia. Here we show that activation of NK-1 receptors produces hyperalgesia by sensitizing nociceptive dorsal horn neurons. Targeting this pathway at its origin or in the spinal cord may be an effective approach for pain management.


2000 ◽  
Vol 84 (3) ◽  
pp. 1180-1185 ◽  
Author(s):  
Xijing Zhang ◽  
Christopher N. Honda ◽  
Glenn J. Giesler

Percutaneous upper cervical cordotomy continues to be performed on patients suffering from several types of severe chronic pain. It is believed that the operation is effective because it cuts the spinothalamic tract (STT), a primary pathway carrying nociceptive information from the spinal cord to the brain in humans. In recent years, there has been controversy regarding the location of STT axons within the spinal cord. The aim of this study was to determine the locations of STT axons within the spinal cord white matter of C2 segment in monkeys using methods of antidromic activation. Twenty lumbar STT cells were isolated. Eleven were classified as wide dynamic range neurons, six as high-threshold cells, and three as low-threshold cells. Eleven STT neurons were recorded in the deep dorsal horn and nine in superficial dorsal horn. The axons of the examined neurons were located at antidromic low-threshold points (<30 μA) within the contralateral lateral funiculus of C2. All low-threshold points were located ventral to the denticulate ligament, within the lateral half of the ventral lateral funiculus (VLF). None were found in the dorsal half of the lateral funiculus. The present findings support our previous suggestion that STT axons migrate ventrally as they ascend the length of the spinal cord. Also, the present findings indicate that surgical cordotomies that interrupt the VLF in C2 likely disrupt the entire lumbar STT.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Yu WeiWei ◽  
Fei WenDi ◽  
Cui Mengru ◽  
Yang Tuo ◽  
Gang Chen

Abstract Clinical therapies for chronic pain are limited. While targeted drugs are promising therapies for chronic pain, they exhibit insufficient efficacy and poor targeting. The occurrence of chronic pain partly results from central changes caused by alterations in neurons in the rostral ventromedial medulla (RVM) in the brainstem regulatory pathway. The RVM, which plays a key role in the descending pain control pathway, greatly contributes to the development and maintenance of pain. However, the exact roles of the RVM in chronic pain remain unclear, making it difficult to develop new drugs targeting the RVM and related pathways. Here, we first discuss the roles of the RVM and related circuits in chronic pain. Then, we analyze synaptic transmission between RVM neurons and spinal cord neurons, specifically focusing on the release of neurotransmitters, to explore the cellular mechanisms by which the RVM regulates chronic pain. Finally, we propose some ideas for the development of drugs targeting the RVM.


1986 ◽  
Vol 55 (3) ◽  
pp. 425-448 ◽  
Author(s):  
Y. Shinoda ◽  
T. Yamaguchi ◽  
T. Futami

To investigate intraspinal branching patterns of single corticospinal neurons (CSNs), we recorded extracellular spike activities from cell bodies of 408 CSNs in the motor cortex in anesthetized cats and mapped the distribution of effective stimulating sites for antidromic activation of their terminal branches in the spinal gray matter. To search for all spinal axon branches belonging to single CSNs in the "forelimb area" of the motor cortex, we microstimulated the gray matter from the dorsal to the ventral border at 100-micron intervals at an intensity of 150-250 microA and systematically mapped effective stimulating penetrations at 1-mm intervals rostrocaudally from C3 to the most caudal level of their axons. From the depth-threshold curves, the comparison of the antidromic latencies of spikes evoked from the gray matter and the lateral funiculus, and the calculated conduction times of the collaterals, we could ascertain that axon collaterals were stimulated in the gray matter rather than stem axons in the corticospinal tract due to current spread. Virtually all CSNs examined in the forelimb area of the motor cortex had three to seven branches at widely separated segments of the cervical and the higher thoracic cord. In addition to terminating at the brachial segments, they had one to three collaterals to the upper cervical cord (C3-C4), where the propriospinal neurons projecting to forelimb motoneurons are located. About three quarters of these CSNs had two to four collaterals in C6-T1. This finding held true for both fast and slow CSNs. About one third of the CSNs in the forelimb area of the motor cortex projected to the thoracic cord below T3. These CSNs also sent axon collaterals to the cervical spinal cord. CSNs in the "hindlimb area" of the motor cortex had three to five axon branches in the lumbosacral cord. These branches were mainly observed at L4 and the lower lumbosacral cord. None of these CSNs had axon collaterals in the cervical cord. CSNs terminating at different segments of the cervical and the thoracic cord were distributed in a wide area of the motor cortex and were intermingled. To determine the detailed trajectory of single axon branches, microstimulation was made at a matrix of points of 100 or 200 micron at the maximum intensity of 30 microA, and their axonal trajectory was reconstructed on the basis of the location of low-threshold foci and the latency of antidromic spikes.(ABSTRACT TRUNCATED AT 400 WORDS)


Author(s):  
Yo Otsu ◽  
Karin Aubrey

Background and Purpose: Descending projections from neurons in the rostral ventromedial medulla (RVM) make synapses within the superficial dorsal horn of the spinal cord that are involved in acute nociception and the development of chronic pain and itch. In addition, this projection plays an important role in mediating the analgesic effects of opioids. However, our knowledge about the spinal synaptic targets of RVM projections and their modulation by opioids is unknown. Experimental Approach: We used ex vivo optogenetic stimulation of RVM descending fibres and whole-cell patch-clamp recordings from superficial dorsal horn (SDH) neurons to identify the target neurons and to investigate their descending synaptic inputs. Key Results: We demonstrate that SDH neurons are targeted by descending GABA/glycine inhibitory inputs from the RVM, although glycinergic inputs predominate. These SDH neurons had diverse morphological and electrical properties. This inhibitory synapse was presynaptically suppressed by the kappa opioid receptor agonist U69593. By contrast, the mu-opioid receptor agonist DAMGO inhibited only a subset of RVM-SDH synapses, acting both pre- and postsynaptically, while the delta-opioid receptor agonist deltorphin II had little effect. Conclusion and Implications: Developing reliable and effective alternatives to opioid analgesics requires a detailed, mechanistic understanding of how opioids interact with nociceptive circuits. This study selectively and systematically characterises the synaptic connections between RVM projection neurons and their SDH targets to advance our knowledge of how this descending projection is organised and modulated. In addition, it improves our understanding of how opioids alter spinal pathways involved in the sensations of pain and itch.


2017 ◽  
Vol 13 ◽  
pp. 174480691771521
Author(s):  
Anne-Sophie Wattiez ◽  
Roxanne Y Walder ◽  
Christopher M Sande ◽  
Stephanie R White ◽  
Donna L Hammond

2014 ◽  
Vol 112 (9) ◽  
pp. 2199-2217 ◽  
Author(s):  
Nabil El Bitar ◽  
Bernard Pollin ◽  
Daniel Le Bars

In thermal neutral condition, rats display cyclic variations of the vasomotion of the tail and paws, synchronized with fluctuations of blood pressure, heart rate, and core body temperature. “On-” and “off-” cells located in the rostral ventromedial medulla, a cerebral structure implicated in somatic sympathetic drive, 1) exhibit similar spontaneous cyclic activities in antiphase and 2) are activated and inhibited by thermal nociceptive stimuli, respectively. We aimed at evaluating the implication of such neurons in autonomic regulation by establishing correlations between their firing and blood pressure, heart rate, and skin and core body temperature variations. When, during a cycle, a relative high core body temperature was reached, the on-cells were activated and within half a minute, the off-cells and blood pressure were depressed, followed by heart rate depression within a further minute; vasodilatation of the tail followed invariably within ∼3 min, often completed with vasodilatation of hind paws. The outcome was an increased heat loss that lessened the core body temperature. When the decrease of core body temperature achieved a few tenths of degrees, sympathetic activation switches off and converse variations occurred, providing cycles of three to seven periods/h. On- and off-cell activities were correlated with inhibition and activation of the sympathetic system, respectively. The temporal sequence of events was as follows: core body temperature → on-cell → off-cell ∼ blood pressure → heart rate → skin temperature → core body temperature. The function of on- and off-cells in nociception should be reexamined, taking into account their correlation with autonomic regulations.


1994 ◽  
Vol 78 (2) ◽  
pp. 182-190 ◽  
Author(s):  
Max H.J.M. Curfs ◽  
Agnes A.M. Gribnau ◽  
Pieter J.W.C. Dederen

Sign in / Sign up

Export Citation Format

Share Document