Activity in Rostral Motor Cortex in Response to Predictable Force-Pulse Perturbations in a Precision Grip Task

2001 ◽  
Vol 86 (3) ◽  
pp. 1079-1085 ◽  
Author(s):  
Marie-Josée Boudreau ◽  
Allan M. Smith

The purpose of this investigation was to characterize the discharge of neurons in the rostral area 4 motor cortex (MI) during performance of a precision grip task. Three monkeys were trained to grasp an object between the thumb and index finger and to lift and hold it stationary for 2–2.5 s within a narrow position window. The grip and load forces and the vertical displacement of the object were recorded on each trial. On some trials a downward force-pulse perturbation generating a shear force and slip on the skin was applied to the object after 1.5 s of static holding. In total, 72 neurons were recorded near the rostral limit of the hand area of the motor cortex, located close to the premotor areas. Of these, 30 neurons were examined for receptive fields, and all 30 were found to receive proprioceptive inputs from finger muscles. Intracortical microstimulation applied to 38 recording sites evoked brief hand movements, most frequently involving the thumb and index finger with an average threshold of 12 μA. Slightly more than one-half of the neurons (38/72) demonstrated significant increases in firing rate that on average began 284 ± 186 ms before grip onset. Of 54 neurons tested with predictable force-pulse perturbations, 29 (53.7%) responded with a reflexlike reaction at a mean latency of 54.2 ± 16.8 ms. This latency was 16 ms longer than the mean latency of reflexlike activity evoked in neurons with proprioceptive receptive fields in the more caudal motor cortex. No neurons exhibited anticipatory activity that preceded the perturbation even when the perturbations were delivered randomly and signaled by a warning stimulus. The results indicate the presence of a strong proprioceptive input to the rostral motor cortex, but raise the possibility that the afferent pathway or intracortical processing may be different because of the slightly longer latency.

2001 ◽  
Vol 86 (3) ◽  
pp. 1067-1078 ◽  
Author(s):  
Marie-Josée Boudreau ◽  
Thomas Brochier ◽  
Michel Paré ◽  
Allan M. Smith

This study compared the responses of ventral and dorsal premotor cortex (PMv and PMd) neurons to predictable force-pulse perturbations applied during a precision grip. Three monkeys were trained to grasp an unseen instrumented object between the thumb and index finger and to lift and hold it stationary within a position window for 2–2.5 s. The grip and load forces and the object displacement were measured on each trial. Single-unit activity was recorded from the hand regions in the PMv and PMd. In some conditions a predictable perturbation was applied to the object after 1,500 ms of static holding, whereas in other conditions different random combinations of perturbed and unperturbed trials were given. In the perturbed conditions, some were randomly and intermittently presented with a warning flash, whereas some were unsignaled. The activities of 198 cells were modulated during the task performance. Of these cells, 151 were located in the PMv, and 47 were located in the PMd. Although both PMv and PMd neurons had similar discharge patterns, more PMd neurons (84 vs. 43%) showed early pregrip activity. Forty of 106 PMv and 10/30 PMd cells responded to the perturbation with reflexlike triggered reactions. The latency of this response was always <100 ms with a mean of about 55 ms in both the PMv and the PMd. In contrast, 106 PMv and 30 PMd cells tested with the perturbations, only 9 and 10%, respectively, showed significant but nonspecific adaptations to the perturbation. The warning stimulus did not increase the occurrence of specific responses to the perturbation even though 21 of 42 cells related to the grip task also responded to moving visual stimuli. The responses were retinal and frequently involved limited portions of both foveal and peripheral visual fields. When tested with a 75 × 5.5-cm dark bar on a light background, these cells were sensitive to the direction of movement. In summary, the periarcuate premotor area activity to related to predictable force-pulse perturbations seems to reflect a general increase in excitability in contrast to a more specific anticipatory activity such as recorded in the cerebellum. In spite of the strong cerebello-thalamo-cortical projections, the results of the present study suggest that the cortical premotor areas are not involved in the elaboration of adaptive internal models of hand-object dynamics.


2015 ◽  
Vol 113 (5) ◽  
pp. 1470-1479 ◽  
Author(s):  
George M. Opie ◽  
Michael C. Ridding ◽  
John G. Semmler

Recent research has demonstrated a task-related modulation of postsynaptic intracortical inhibition within primary motor cortex for tasks requiring isolated (abduction) or synergistic (precision grip) muscle activation. The current study sought to investigate task-related changes in pre- and postsynaptic intracortical inhibition in motor cortex. In 13 young adults (22.5 ± 3.5 yr), paired-pulse transcranial magnetic stimulation (TMS) was used to measure short (SICI)- and long-interval intracortical inhibition (LICI) (i.e., postsynaptic motor cortex inhibition) in first dorsal interosseous muscle, and triple-pulse TMS was used to investigate changes in SICI-LICI interactions (i.e., presynaptic motor cortex inhibition). These measurements were obtained at rest and during muscle activation involving isolated abduction of the index finger and during a precision grip using the index finger and thumb. SICI was reduced during abduction and precision grip compared with rest, with greater reductions during precision grip. The modulation of LICI during muscle activation depended on the interstimulus interval (ISI; 100 and 150 ms) but was not different between abduction and precision grip. For triple-pulse TMS, SICI was reduced in the presence of LICI at both ISIs in resting muscle (reflecting presynaptic motor cortex inhibition) but was only modulated at the 150-ms ISI during index finger abduction. Results suggest that synergistic contractions are accompanied by greater reductions in postsynaptic motor cortex inhibition than isolated contractions, but the contribution of presynaptic mechanisms to this disinhibition is limited. Furthermore, timing-dependent variations in LICI provide additional evidence that measurements using different ISIs may not represent activation of the same cortical process.


Author(s):  
M. Smith Allan ◽  
Dugas Clause ◽  
Fortier Pierre ◽  
Kalasha John ◽  
Picard Nathalie

ABSTRACT:The activity of single cells in the cerebellar and motor cortex of awake monkeys was recorded during separate studies of whole-arm reaching movements and during the application of force-pulse perturbations to handheld objects. Two general observations about the contribution of the cerebellum to the control of movement emerge from the data. The first, derived from the study of whole arm reaching, suggests that although both the motor cortex and cerebellum generate a signal related to movement direction, the cerebellar signal is less precise and varies from trial to trial even when the movement kinematics remain unchanged. The second observation, derived from the study of predictable perturbations of a hand-held object, indicates that cerebellar cortical neurons better reflect preparatory motor strategies formed from the anticipation of cutaneous and proprioceptive stimuli acquired by previous experience. In spite of strong relations to grip force and receptive fields stimulated by preparatory grip forces increase, the neurons of the percentral motor cortex showed very little anticipatory activity compared with either the premotor areas or the cerebellum.


2004 ◽  
Vol 91 (3) ◽  
pp. 1230-1239 ◽  
Author(s):  
Joël Monzée ◽  
Allan M. Smith

Two monkeys were trained to lift and hold an instrumented object at a fixed height for 2.5 s using a precision grip. The device was equipped with load cells to measure both the grip and lifting or load forces. On selected blocks of 20-30 trials, a downward force-pulse perturbation was applied to the object after 1.5 s of stationary holding. The animals were required to resist the perturbation to obtain a fruit juice reward. The perturbations invariably elicited a reflex-like, time-locked increase in grip force at latencies between 50 and 100 ms. In this study, we searched for single cells in the interpositus and dentate nuclei with activity related to grasping and lifting, and we tested 127/150 task-related cells for their responses to the perturbation. Of the 127 cells, reflex-like increases or decreases in discharge frequency occurred in 75 cells (59%) at a mean latency of 36 ms. Preparatory increases in grip force preceding the perturbation appeared gradually and increased in strength with repetition in 39/127 (31%) cells. These preparatory increases did not immediately disappear when the perturbations were withdrawn but decreased progressively over repeated trials. Although a few cells showed anticipatory activity without a reflex-like response (15/127 or 12%), the majority of these cells (24/39) displayed both anticipatory and reflex-like responses. From an examination of the histological sections, cells with both anticipatory and reflex-like responses appeared to be confined to the dorsal anterior interpositus, adjacent to, but not within, the dentate nucleus. These results confirm and extend the suggestion by Dugas and Smith that the cerebellum plays a major role in organizing anticipatory responses to predictable perturbations in a manner that medial and lateral premotor areas of the cerebral cortex do not.


2020 ◽  
Vol 598 (4) ◽  
pp. 839-851 ◽  
Author(s):  
Giovanna Pilurzi ◽  
Francesca Ginatempo ◽  
Beniamina Mercante ◽  
Luigi Cattaneo ◽  
Giovanni Pavesi ◽  
...  

2009 ◽  
Vol 102 (5) ◽  
pp. 2755-2762 ◽  
Author(s):  
Sukhvinder S. Obhi ◽  
Shannon Matkovich ◽  
Robert Chen

Humans often have to modify the timing and/or type of their planned actions on the basis of new sensory information. In the present experiments, participants planned to make a right index finger keypress 3 s after a warning stimulus but on some trials were interrupted by a temporally unpredictable auditory tone prompting the same action ( experiment 1) or a different action ( experiment 2). In experiment 1, by comparing the reaction time (RT) to tones presented at different stages of the preparatory period to RT in a simple reaction time condition, we determined the cost of switching from an internally generated mode of response production to an externally triggered mode in situations requiring only a change in when an action is made (i.e., when the tone prompts the action at a different time from the intended time of action). Results showed that the cost occurred for interruption tones delivered 200 ms after a warning stimulus and remained relatively stable throughout most of the preparatory period with a reduction in the magnitude of the cost during the last 200 ms prior to the intended time of movement. In experiment 2, which included conditions requiring a change in both when and what action is produced on the tone, results show a larger cost when the switched to action is different from the action being prepared. We discuss our results in the light of neurophysiological experiments on motor preparation and suggest that intending to act is accompanied by a general inhibitory mechanism preventing premature motor output and a specific excitatory process pertaining to the intended movement. Interactions between these two mechanisms could account for our behavioral results.


1997 ◽  
Vol 78 (1) ◽  
pp. 271-280 ◽  
Author(s):  
Mary M. Werremeyer ◽  
Kelly J. Cole

Werremeyer, Mary M. and Kelly J. Cole. Wrist action affects precision grip force. J. Neurophysiol. 78: 271–280, 1997. When moving objects with a precision grip, fingertip forces normal to the object surface (grip force) change in parallel with forces tangential to the object (load force). We investigated whether voluntary wrist actions can affect grip force independent of load force, because the extrinsic finger muscles cross the wrist. Grip force increased with wrist angular speed during wrist motion in the horizontal plane, and was much larger than the increased tangential load at the fingertips or the reaction forces from linear acceleration of the test object. During wrist flexion the index finger muscles in the hand and forearm increased myoelectric activity; during wrist extension this myoelectric activity increased little, or decreased for some subjects. The grip force maxima coincided with wrist acceleration maxima, and grip force remained elevated when subjects held the wrist in extreme flexion or extension. Likewise, during isometric wrist actions the grip force increased even though the fingertip loads remained constant. A grip force “pulse” developed that increased with wrist force rate, followed by a static grip force while the wrist force was sustained. Subjects could not suppress the grip force pulse when provided visual feedback of their grip force. We conclude that the extrinsic hand muscles can be recruited to assist the intended wrist action, yielding higher grip-load ratios than those employed with the wrist at rest. This added drive to hand muscles overcame any loss in muscle force while the extrinsic finger flexors shortened during wrist flexion motion. During wrist extension motion grip force increases apparently occurred from eccentric contraction of the extrinsic finger flexors. The coactivation of hand closing muscles with other wrist muscles also may result in part from a general motor facilitation, because grip force increased during isometric knee extension. However, these increases were related weakly to the knee force. The observed muscle coactivation, from all sources, may contribute to grasp stability. For example, when transporting grasped objects, upper limb accelerations simultaneously produce inertial torques at the wrist that must be resisted, and inertial loads at the fingertips from the object that must be offset by increased grip force. The muscle coactivation described here would cause similarly timed pulses in the wrist force and grip force. However, grip-load coupling from this mechanism would not contribute much to grasp stability when small wrist forces are required, such as for slow movements or when the object's total resistive load is small.


1999 ◽  
Vol 81 (2) ◽  
pp. 825-834 ◽  
Author(s):  
Iran Salimi ◽  
Thomas Brochier ◽  
Allan M. Smith

Neuronal activity in somatosensory cortex of monkeys using a precision grip. I. Receptive fields and discharge patterns. Three adolescent Macaca fascicularis monkeys weighing between 3.5 and 4 kg were trained to use a precision grip to grasp a metal tab mounted on a low friction vertical track and to lift and hold it in a 12- to 25-mm position window for 1 s. The surface texture of the metal tab in contact with the fingers and the weight of the object could be varied. The activity of 386 single cells with cutaneous receptive fields contacting the metal tab were recorded in Brodmann’s areas 3b, 1, 2, 5, and 7 of the somatosensory cortex. In this first of a series of papers, we describe three types of discharge pattern, the receptive-field properties, and the anatomic distribution of the neurons. The majority of the receptive fields were cutaneous and covered less than one digit, and a χ2 test did not reveal any significant differences in the Brodmann’s areas representing the thumb and index finger. Two broad categories of discharge pattern cells were identified. The first category, dynamic cells, showed a brief increase in activity beginning near grip onset, which quickly subsided despite continued pressure applied to the receptive field. Some of the dynamic neurons responded to both skin indentation and release. The second category, static cells, had higher activity during the stationary holding phase of the task. These static neurons demonstrated varying degrees of sensitivity to rates of pressure change on the skin. The percentage of dynamic versus static cells was about equal for areas 3b, 2, 5, and 7. Only area 1 had a higher proportion of dynamic cells (76%). A third category was identified that contained cells with significant pregrip activity and included cortical cells with both dynamic or static discharge patterns. Cells in this category showed activity increases before movement in the absence of receptive-field stimulation, suggesting that, in addition to peripheral cutaneous input, these cells also receive strong excitation from movement-related regions of the brain.


1995 ◽  
Vol 73 (6) ◽  
pp. 2584-2590 ◽  
Author(s):  
G. Cadoret ◽  
A. M. Smith

1. Neurons with proprioceptive or cutaneous receptive fields associated with the hand were identified in the ventral bank of the cingulate sulcus in the monkey. Cells with proprioceptive fields outnumbered cells receiving cutaneous afferents by more than three to one. No cells were encountered that received convergent proprioceptive and cutaneous input. The high concentration of these neurons in the lateral depth of the cingulate sulcus establishes that a distinct hand representation exists within the rostral part of area 23c. 2. Hand-related neurons in area 23c exhibited strong activity modulations during grasping, lifting, and holding an object with the contralateral thumb and index finger. Force pulse perturbations applied to the object elicited excitatory responses at latencies of approximately 45 ms. The modulation of the cellular activity and the input-output properties of these cingulate neurons suggest that, like neurons of primary motor and sensory cortex, these cingulate neurons are also involved in the sensorimotor control of finger movements.


2006 ◽  
Vol 95 (2) ◽  
pp. 1274-1277 ◽  
Author(s):  
Wendy A. Friedman ◽  
Lauren M. Jones ◽  
Nathan P. Cramer ◽  
Ernest E. Kwegyir-Afful ◽  
H. Philip Zeigler ◽  
...  

Rats characteristically generate stereotyped exploratory (5–12 Hz) whisker movements, which can also be adaptively modulated. Here we tested the hypothesis that the vibrissal representation in motor cortex (vMCx) initiates and modulates whisking by acting on a subcortical whisking central pattern generator (CPG). We recorded local field potentials (LFPs) in vMCx of behaving Sprague-Dawley rats while monitoring whisking behavior through mystacial electromyograms (EMGs). Recordings were made during free exploration, under body restraint, or in a head-fixed animal. LFP activity increased significantly prior to the onset of a whisking epoch and ended prior to the epoch's termination. In addition, shifts in whisking kinematics within a whisk epoch were often reflected in changes in LFP activity. These data support the hypothesis that vMCx may initiate and modulate whisking behavior through its action on a subcortical CPG.


Sign in / Sign up

Export Citation Format

Share Document