force pulse
Recently Published Documents


TOTAL DOCUMENTS

32
(FIVE YEARS 1)

H-INDEX

9
(FIVE YEARS 0)

2021 ◽  
Vol 76 ◽  
pp. 102762
Author(s):  
Taylor L. Buchanan ◽  
Christopher M. Janelle


Author(s):  
С.М. Базаров

Механика берет свое начало со статики. Основным понятием статики является понятие «сила». При нарушении равновесия возникает движение, которое определяется скоростью и ускорением в координатной системе пространство–время; скорость определяется как отношение мгновенного изменения координаты к соответствующему мгновенному изменению времени. В свою очередь изменение мгновенной скорости, т. е. ускорение, связано с воздействием силы за мгновенное время, и называется импульсом силы. Второй закон Ньютона как основной закон динамики сформулирован для воздействия на тело постоянной силы за короткий промежуток времени, т. е. импульса силы. Импульс силы вызывает изменение скорости движения тела; мерой сопротивления тела изменениям скорости является масса; произведением массы на скорость вводится понятие «количество движения» (импульс). Поэтому второй закон Ньютона определяет силу как отношение изменения количества движения к короткому времени действия импульса силы. Короткое время действия силы является частным случаем непрерывного ее действия во времени. В данном исследовании импульс силы понимается в обобщенном представлении как произведение силы на непрерывное время действия. По аналогии импульсу силы во времени вводится импульс силы в пространстве. С позиции системного анализа графиков сила–время, масса–скорость, сила–пространство, мощность время построены дифференциальные и интегральные законы динамики потенциально связного взаимодействия соответственно сила–время–масса– скорость, сила–пространство–работа, мощность–время–энергия. Анализ полных дифференциалов потенциалов приводит к представлениям функционального времени и пространства, которые сопряжено дополняют время и пространство взаимодействия. Время и пространство действия силы в исследуемых системах по аналогии с массой рассматриваются как меры сопротивления тела изменениям силы, т. е. как механические параметры, а не геометрические. Интегральные законы динамики построены в виде суперпозиции интегралов Римана для прямых функций и интегралов Стилтьеса для обратных. Интегралы Римана описывают современную динамику, а интегралы Стилтьеса ее дополнение до потенциальной. Mechanics starts with statics. The main concept of statics is the concept of force. When the equilibrium is disturbed, motion occurs, which is determined by the speed and acceleration in the space-time coordinate system; speed is defined as the ratio of an instantaneous change in the coordinate to the corresponding instantaneous change in time. In turn, the change in instantaneous speed, i.e. acceleration, is associated with the impact of a force in an instantaneous time, which is called the force pulse. The second law of Newton, as the basic law of dynamics, is formulated for the effect on the body of a constant force for a short period of time, i.e., the force impulse. The force pulse causes a change in the speed of the body; the measure of the body's resistance to changes in speed is the mass; the product of mass and speed is introduced the concept of the amount of movement (momentum). Therefore, Newton's second law defines force as the ratio of the change in the amount of motion to the short time of action of the force impulse. The short duration of the force is a special case of continuous time. In this study, the force impulse is understood in a generalized representation as the product of the force for a continuous time of action. By analogy with a force pulse in time, a force pulse in space is introduced. With the system chart analysis force-time, mass speed, force, space, power is the differential and integral laws of dynamics potentially Svyaznoy interaction, respectively, the power–time–weight–speed, power– space–work, power–time–energy. The analysis of complete potential differentials leads to representations of functional time and space that complement the interaction time and space. The time and space of the force action in the studied systems are considered by analogy with mass as measures of the body's resistance to changes in force, i. e. as mechanical parameters, rather than geometric ones. The integral laws of dynamics are constructed as a superposition of Riemann integrals for direct functions and stiltjes integrals for inverse functions. Riemann integrals describe modern dynamics, and stiltjes integrals describe its complement to the potential one.



2018 ◽  
Vol 101 ◽  
pp. 218-228 ◽  
Author(s):  
Abdennacer Ben Hmed ◽  
Toufik Bakir ◽  
Yoann M. Garnier ◽  
Anis Sakly ◽  
Romuald Lepers ◽  
...  




2016 ◽  
Vol 16 (4) ◽  
pp. 175-181
Author(s):  
Martin Bílek ◽  
Šimon Kovář ◽  
Josef Skřivánek

Abstract The manufacturers of weaving equipment recently endeavour to minimise the necessary designing plays in the weaving loom mechanisms. One of the mechanisms most exposed to stress is the shedding motion that defines the held-shaft stroke. Its end part is the heald shaft. The heald shaft constitutes a problematic assembly of the shedding motion. The design employed presently is characterised by dynamic impact loading caused by designing play in the suspension of healds into the heald shaft. During weaving cycle, the healds fly between the main beams of the heald shaft, producing a considerable force pulse. This paper is concerned with the description of dynamic behaviour of the existing design on the basis of mathematical modelling and verification of obtained results by means of experimental analysis.



2013 ◽  
Vol 321-324 ◽  
pp. 98-101
Author(s):  
Jun Zhang ◽  
Meng Meng Niu ◽  
Hong Mei Tang ◽  
Xian Hua Li ◽  
Chun Ren Tang ◽  
...  

Due to the high flow pulsation,the ordinary gear pump has large vibration, noise. A new structure named multi-gear pump was proposed. The model of the pump was established. The motion simulation was given to compare with common gear pump. The simulation analysis show that the pump tooth contact force pulse value is 0.296, which is about 25% lower than the common gear pump. Findings from the paper are supposed to provide a theoretical basis for the following experiments and to improve the life of gear.



2012 ◽  
Vol 166-169 ◽  
pp. 1187-1195
Author(s):  
Zhi Li Yong ◽  
Gong Xian Wang ◽  
Jian Ming Yuan

Based on the concept of hydraulic damper energy dissipation, a passive Hydraulic Force Pulse Generator (HFPG) is presented. The design comprises a conical poppet valve inside a cylindrical hole without any seat. By virtue of aperture and orifice throttling, HFPG dissipates the kinetic energy of a rapidly moving object and cushions it to a halt to produce desired acceleration pulse. Prompt and easy adjustment can be achieved to the damping force by changing the size of the orifice set on cylinder. A mathematical model of the cushion process is developed by way of analyzing the internal fluid dynamic phenomenon of HFPG. And numerical simulation results of the model has exhibited the following features of HFPG: high-efficiency of energy dissipation; easy-regulation of acceleration waveform and being suitable in conditions with large momentum change, especially to be used as the negative pulse generator of dual-wave shock testing machines which can simulate the shock environment of underwater explosion.



2010 ◽  
Vol 6 (4) ◽  
pp. 510-515 ◽  
Author(s):  
Michael J. Allen ◽  
Robert E. Rudd ◽  
Mike W. McElfresh ◽  
Rod Balhorn


Sign in / Sign up

Export Citation Format

Share Document