scholarly journals Large-Scale Chronically Implantable Precision Motorized Microdrive Array for Freely Behaving Animals

2008 ◽  
Vol 100 (4) ◽  
pp. 2430-2440 ◽  
Author(s):  
Jun Yamamoto ◽  
Matthew A. Wilson

Multiple single-unit recording has become one of the most powerful in vivo electro-physiological techniques for studying neural circuits. The demand has been increasing for small and lightweight chronic recording devices that allow fine adjustments to be made over large numbers of electrodes across multiple brain regions. To achieve this, we developed precision motorized microdrive arrays that use a novel motor multiplexing headstage to dramatically reduce wiring while preserving precision of the microdrive control. Versions of the microdrive array were chronically implanted on both rats (21 microdrives) and mice (7 microdrives), and relatively long-term recordings were taken.

1967 ◽  
Vol 06 (01) ◽  
pp. 8-14 ◽  
Author(s):  
M. F. Collen

The utilization of an automated multitest laboratory as a data acquisition center and of a computer for trie data processing and analysis permits large scale preventive medical research previously not feasible. Normal test values are easily generated for the particular population studied. Long-term epidemiological research on large numbers of persons becomes practical. It is our belief that the advent of automation and computers has introduced a new era of preventive medicine.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Catalina Alvarado-Rojas ◽  
Michel Le Van Quyen

Little is known about the long-term dynamics of widely interacting cortical and subcortical networks during the wake-sleep cycle. Using large-scale intracranial recordings of epileptic patients during seizure-free periods, we investigated local- and long-range synchronization between multiple brain regions over several days. For such high-dimensional data, summary information is required for understanding and modelling the underlying dynamics. Here, we suggest that a compact yet useful representation is given by a state space based on the first principal components. Using this representation, we report, with a remarkable similarity across the patients with different locations of electrode placement, that the seemingly complex patterns of brain synchrony during the wake-sleep cycle can be represented by a small number of characteristic dynamic modes. In this space, transitions between behavioral states occur through specific trajectories from one mode to another. These findings suggest that, at a coarse level of temporal resolution, the different brain states are correlated with several dominant synchrony patterns which are successively activated across wake-sleep states.


Science ◽  
2021 ◽  
pp. eabi8870
Author(s):  
Saba Parvez ◽  
Chelsea Herdman ◽  
Manu Beerens ◽  
Korak Chakraborti ◽  
Zachary P. Harmer ◽  
...  

CRISPR-Cas9 can be scaled up for large-scale screens in cultured cells, but CRISPR screens in animals have been challenging because generating, validating, and keeping track of large numbers of mutant animals is prohibitive. Here, we report Multiplexed Intermixed CRISPR Droplets (MIC-Drop), a platform combining droplet microfluidics, single-needle en masse CRISPR ribonucleoprotein injections, and DNA barcoding to enable large-scale functional genetic screens in zebrafish. The platform can efficiently identify genes responsible for morphological or behavioral phenotypes. In one application, we show MIC-Drop can identify small molecule targets. Furthermore, in a MIC-Drop screen of 188 poorly characterized genes, we discover several genes important for cardiac development and function. With the potential to scale to thousands of genes, MIC-Drop enables genome-scale reverse-genetic screens in model organisms.


2021 ◽  
Vol 376 (1821) ◽  
pp. 20190765 ◽  
Author(s):  
Giovanni Pezzulo ◽  
Joshua LaPalme ◽  
Fallon Durant ◽  
Michael Levin

Nervous systems’ computational abilities are an evolutionary innovation, specializing and speed-optimizing ancient biophysical dynamics. Bioelectric signalling originated in cells' communication with the outside world and with each other, enabling cooperation towards adaptive construction and repair of multicellular bodies. Here, we review the emerging field of developmental bioelectricity, which links the field of basal cognition to state-of-the-art questions in regenerative medicine, synthetic bioengineering and even artificial intelligence. One of the predictions of this view is that regeneration and regulative development can restore correct large-scale anatomies from diverse starting states because, like the brain, they exploit bioelectric encoding of distributed goal states—in this case, pattern memories. We propose a new interpretation of recent stochastic regenerative phenotypes in planaria, by appealing to computational models of memory representation and processing in the brain. Moreover, we discuss novel findings showing that bioelectric changes induced in planaria can be stored in tissue for over a week, thus revealing that somatic bioelectric circuits in vivo can implement a long-term, re-writable memory medium. A consideration of the mechanisms, evolution and functionality of basal cognition makes novel predictions and provides an integrative perspective on the evolution, physiology and biomedicine of information processing in vivo . This article is part of the theme issue ‘Basal cognition: multicellularity, neurons and the cognitive lens’.


Author(s):  
William L. Coleman ◽  
R. Michael Burger

Small biogenic changes in voltage such as action potentials in neurons can be monitored using extracellular single unit recording techniques. This technique allows for investigation of neuronal electrical activity in a manner that is not disruptive to the cell membrane, and individual neurons can be recorded from for extended periods of time. This chapter discusses the basic requirements for an extracellular recording setup, including different types of electrodes, apparatus for controlling electrode position and placement, recording equipment, signal output, data analysis, and the histological confirmation of recording sites usually required for in vivo recordings. A more advanced extracellular recording technique using piggy-back style multibarrel electrodes that allows for localized pharmacological manipulation of neuronal properties is described in detail. Strategies for successful signal isolation, troubleshooting advice such as noise reduction, and suggestions for general laboratory equipment are also discussed.


2012 ◽  
Vol 33 (1) ◽  
pp. 146-156 ◽  
Author(s):  
Roa Harb ◽  
Christina Whiteus ◽  
Catarina Freitas ◽  
Jaime Grutzendler

Cerebral function and viability are critically dependent on efficient delivery of oxygen and glucose through the microvasculature. Here, we studied individual microvessels in the intact brain using high-resolution confocal imaging and long-term time-lapse two-photon microscopy across the lifetime of a mouse. In the first postnatal month, we found large-scale sprouting but to our surprise the majority of sprouts underwent pruning and only a small fraction became perfused capillaries. After the first month, microvessel formation and elimination decreased and the net number of vessels stabilized. Although vascular stability was the hallmark of the adult brain, some vessel formation and elimination continued throughout life. In young adult mice, vessel formation was markedly increased after exposure to hypoxia; however, upon return to normoxia, no vessel elimination was observed, suggesting that new vessels constitute a long-term adaptive response to metabolic challenges. This plasticity was markedly reduced in older adults and aging where hypoxia-induced angiogenesis was absent. Our study describes, for the first time in vivo patterns of cerebral microvascular remodeling throughout life. Disruption of the observed balance between baseline turnover and vascular stability may underlie a variety of developmental and age-related degenerative neurological disorders.


2003 ◽  
Vol 358 (1432) ◽  
pp. 815-819 ◽  
Author(s):  
Mark J. Thomas ◽  
Robert C. Malenka

Long-term potentiation (LTP) and long-term depression (LTD) are thought to be critical mechanisms that contribute to the neural circuit modifications that mediate all forms of experience-dependent plasticity. It has, however, been difficult to demonstrate directly that experience causes long-lasting changes in synaptic strength and that these mediate changes in behaviour. To address these potential functional roles of LTP and LTD, we have taken advantage of the powerful in vivo effects of drugs of abuse that exert their behavioural effects in large part by acting in the nucleus accumbens (NAc) and ventral tegmental area (VTA); the two major components of the mesolimbic dopamine system. Our studies suggest that in vivo drugs of abuse such as cocaine cause long-lasting changes at excitatory synapses in the NAc and VTA owing to activation of the mechanisms that underlie LTP and LTD in these structures. Thus, administration of drugs of abuse provides a distinctive model for further investigating the mechanisms and functions of synaptic plasticity in brain regions that play important roles in the control of motivated behaviour, and one with considerable practical implications.


Sign in / Sign up

Export Citation Format

Share Document