scholarly journals Synaptic plasticity in the mesolimbic dopamine system

2003 ◽  
Vol 358 (1432) ◽  
pp. 815-819 ◽  
Author(s):  
Mark J. Thomas ◽  
Robert C. Malenka

Long-term potentiation (LTP) and long-term depression (LTD) are thought to be critical mechanisms that contribute to the neural circuit modifications that mediate all forms of experience-dependent plasticity. It has, however, been difficult to demonstrate directly that experience causes long-lasting changes in synaptic strength and that these mediate changes in behaviour. To address these potential functional roles of LTP and LTD, we have taken advantage of the powerful in vivo effects of drugs of abuse that exert their behavioural effects in large part by acting in the nucleus accumbens (NAc) and ventral tegmental area (VTA); the two major components of the mesolimbic dopamine system. Our studies suggest that in vivo drugs of abuse such as cocaine cause long-lasting changes at excitatory synapses in the NAc and VTA owing to activation of the mechanisms that underlie LTP and LTD in these structures. Thus, administration of drugs of abuse provides a distinctive model for further investigating the mechanisms and functions of synaptic plasticity in brain regions that play important roles in the control of motivated behaviour, and one with considerable practical implications.

2019 ◽  
Author(s):  
Cleiton Lopes-Aguiar ◽  
Rafael N. Ruggiero ◽  
Matheus T. Rossignoli ◽  
Ingrid de Miranda Esteves ◽  
José Eduardo Peixoto Santos ◽  
...  

ABSTRACTN-methyl-D-aspartate receptor (NMDAr) antagonists such as ketamine (KET) produce psychotic-like behavior in both humans and animal models. NMDAr hypofunction affects normal oscillatory dynamics and synaptic plasticity in key brain regions related with schizophrenia, particularly in the hippocampus and the prefrontal cortex. In contrast, long-term potentiation (LTP) induction is known to increase glutamatergic transmission. Thus, we hypothesized that LTP could mitigate the electrophysiological changes promoted by KET. We recorded HPC-PFC local field potentials and evoked responses in urethane anesthetized rats, before and after KET administration, preceded or not by LTP induction. Our results show that KET promotes an aberrant delta-high-gamma crossfrequency coupling in the PFC and an enhancement in HPC-PFC evoked responses. LTP induction prior to KET attenuates changes in synaptic efficiency and prevents the increase in cortical gamma amplitude comodulation. These findings are consistent with evidence that increased efficiency of glutamatergic receptors attenuates cognitive impairment in animal models of psychosis. Therefore, high-frequency stimulation in HPC may be a useful tool to better understand how to prevent NMDAr hypofunction effects on synaptic plasticity and oscillatory coordination in cortico-limbic circuits.


2012 ◽  
Vol 71 (4) ◽  
pp. 435-445 ◽  
Author(s):  
R. van Zessen ◽  
G. van der Plasse ◽  
R. A. H. Adan

Feeding behaviour is crucial for the survival of an organism and is regulated by different brain circuits. Among these circuits the mesolimbic dopamine (DA) system is implicated in the anticipation and motivation for food rewards. This system consists of the dopaminergic neurons in the ventral tegmental area (VTA), and their projections to different cortico-limbic structures such as the nucleus accumbens and medial prefrontal cortex. While the importance of this system in motivational drive for different rewards, including drugs of abuse, has been clearly established, its role in energy balance remains largely unexplored. Evidence suggests that peripheral hormones such as leptin and ghrelin are involved in the anticipation and motivation for food and this might be partially mediated through their effects on the VTA. Yet, it remains to be determined whether these effects are direct effects of ghrelin and leptin onto VTA DA neurons, and to what extent indirect effects through other brain areas contribute. Elucidation of the role of leptin and ghrelin signalling on VTA DA neurons in relation to disruptions of energy balance might provide important insights into the role of this neural circuit in obesity and anorexia nervosa.


2020 ◽  
Vol 17 (4) ◽  
pp. 354-360 ◽  
Author(s):  
Yu-Xing Ge ◽  
Ying-Ying Lin ◽  
Qian-Qian Bi ◽  
Yu-Juan Chen

Background: Patients with temporal lobe epilepsy (TLE) usually suffer from cognitive deficits and recurrent seizures. Brivaracetam (BRV) is a novel anti-epileptic drug (AEDs) recently used for the treatment of partial seizures with or without secondary generalization. Different from other AEDs, BRV has some favorable properties on synaptic plasticity. However, the underlying mechanisms remain elusive. Objective: The aim of this study was to explore the neuroprotective mechanism of BRV on synaptic plasticity in experimental TLE rats. Methods: The effect of chronic treatment with BRV (10 mg/kg) was assessed on Pilocarpine induced TLE model through measurement of the field excitatory postsynaptic potentials (fEPSPs) in vivo. Differentially expressed synaptic vesicle protein 2A (SV2A) were identified with immunoblot. Then, fast phosphorylation of synaptosomal-associated protein 25 (SNAP-25) during long-term potentiation (LTP) induction was performed to investigate the potential roles of BRV on synaptic plasticity in the TLE model. Results: An increased level of SV2A accompanied by a depressed LTP in the hippocampus was shown in epileptic rats. Furthermore, BRV treatment continued for more than 30 days improved the over-expression of SV2A and reversed the synaptic dysfunction in epileptic rats. Additionally, BRV treatment alleviates the abnormal SNAP-25 phosphorylation at Ser187 during LTP induction in epileptic ones, which is relevant to the modulation of synaptic vesicles exocytosis and voltagegated calcium channels. Conclusion: BRV treatment ameliorated the over-expression of SV2A in the hippocampus and rescued the synaptic dysfunction in epileptic rats. These results identify the neuroprotective effect of BRV on TLE model.


2015 ◽  
Vol 210 (5) ◽  
pp. 771-783 ◽  
Author(s):  
Norbert Bencsik ◽  
Zsófia Szíber ◽  
Hanna Liliom ◽  
Krisztián Tárnok ◽  
Sándor Borbély ◽  
...  

Actin turnover in dendritic spines influences spine development, morphology, and plasticity, with functional consequences on learning and memory formation. In nonneuronal cells, protein kinase D (PKD) has an important role in stabilizing F-actin via multiple molecular pathways. Using in vitro models of neuronal plasticity, such as glycine-induced chemical long-term potentiation (LTP), known to evoke synaptic plasticity, or long-term depolarization block by KCl, leading to homeostatic morphological changes, we show that actin stabilization needed for the enlargement of dendritic spines is dependent on PKD activity. Consequently, impaired PKD functions attenuate activity-dependent changes in hippocampal dendritic spines, including LTP formation, cause morphological alterations in vivo, and have deleterious consequences on spatial memory formation. We thus provide compelling evidence that PKD controls synaptic plasticity and learning by regulating actin stability in dendritic spines.


2016 ◽  
Vol 2016 ◽  
pp. 1-19 ◽  
Author(s):  
Sung-Soo Jang ◽  
Hee Jung Chung

Alzheimer’s disease (AD) is an irreversible brain disorder characterized by progressive cognitive decline and neurodegeneration of brain regions that are crucial for learning and memory. Although intracellular neurofibrillary tangles and extracellular senile plaques, composed of insoluble amyloid-β(Aβ) peptides, have been the hallmarks of postmortem AD brains, memory impairment in early AD correlates better with pathological accumulation of soluble Aβoligomers and persistent weakening of excitatory synaptic strength, which is demonstrated by inhibition of long-term potentiation, enhancement of long-term depression, and loss of synapses. However, current, approved interventions aiming to reduce Aβlevels have failed to retard disease progression; this has led to a pressing need to identify and target alternative pathogenic mechanisms of AD. Recently, it has been suggested that the disruption of Hebbian synaptic plasticity in AD is due to aberrant metaplasticity, which is a form of homeostatic plasticity that tunes the magnitude and direction of future synaptic plasticity based on previous neuronal or synaptic activity. This review examines emerging evidence for aberrant metaplasticity in AD. Putative mechanisms underlying aberrant metaplasticity in AD will also be discussed. We hope this review inspires future studies to test the extent to which these mechanisms contribute to the etiology of AD and offer therapeutic targets.


2020 ◽  
Vol 6 (1) ◽  
pp. 103-111 ◽  
Author(s):  
Yosef Avchalumov ◽  
Chitra D. Mandyam

Alcohol is one of the oldest pharmacological agents used for its sedative/hypnotic effects, and alcohol abuse and alcohol use disorder (AUD) continues to be major public health issue. AUD is strongly indicated to be a brain disorder, and the molecular and cellular mechanism/s by which alcohol produces its effects in the brain are only now beginning to be understood. In the brain, synaptic plasticity or strengthening or weakening of synapses, can be enhanced or reduced by a variety of stimulation paradigms. Synaptic plasticity is thought to be responsible for important processes involved in the cellular mechanisms of learning and memory. Long-term potentiation (LTP) is a form of synaptic plasticity, and occurs via N-methyl-D-aspartate type glutamate receptor (NMDAR or GluN) dependent and independent mechanisms. In particular, NMDARs are a major target of alcohol, and are implicated in different types of learning and memory. Therefore, understanding the effect of alcohol on synaptic plasticity and transmission mediated by glutamatergic signaling is becoming important, and this will help us understand the significant contribution of the glutamatergic system in AUD. In the first part of this review, we will briefly discuss the mechanisms underlying long term synaptic plasticity in the dorsal striatum, neocortex and the hippocampus. In the second part we will discuss how alcohol (ethanol, EtOH) can modulate long term synaptic plasticity in these three brain regions, mainly from neurophysiological and electrophysiological studies. Taken together, understanding the mechanism(s) underlying alcohol induced changes in brain function may lead to the development of more effective therapeutic agents to reduce AUDs.


2003 ◽  
Vol 89 (6) ◽  
pp. 2917-2922 ◽  
Author(s):  
D. B. Freir ◽  
C. E. Herron

Hippocampal long-term potentiation (LTP) is a form of synaptic plasticity used as a cellular model of memory. Beta amyloid (Aβ) is involved in Alzheimer's disease (AD), a neurode-generative disorder leading to cognitive deficits. Nicotine is also claimed to act as a cognitive enhancer. Aβ is known to bind with high affinity to the α7-nicotinic acetylcholine receptor (nAChR). Here we have investigated the effect of intracerebroventricular (icv) injection of the endogenous peptide Aβ1–40 on LTP in area CA1 of urethananesthetized rats. We also examined the effect of Aβ12–28 (icv), which binds with high affinity to the α7-nAChR and the specific α7-nAChR antagonist methyllycaconitine (MLA) on LTP. We found that Aβ12–28 had no effect on LTP, whereas MLA depressed significantly LTP, suggesting that activation of the α7-nAChR is a requirement for LTP. Within the in vivo environment, where other factors may compete with Aβ12–28 for binding to α7-nAChR, it does not appear to modulate LTP. To determine if the depressive action of Aβ1–40 on LTP could be modulated by nicotine, these agents were also co-applied. Injection of 1 or 10 nmol Aβ1–40 caused a significant depression of LTP, whereas nicotine alone (3 mg/kg) had no effect on LTP. Co-injection of nicotine with Aβ1–40 1 h prior to LTP induction caused a further significant depression of LTP compared with Aβ1–40 alone. These results demonstrate that nicotine enhances the deficit in LTP produced by Aβ1–40. This then suggests that nicotine may exacerbate the depressive actions of Aβ on synaptic plasticity in AD.


BMC Genomics ◽  
2017 ◽  
Vol 18 (1) ◽  
Author(s):  
Jesper L. V. Maag ◽  
Dominik C. Kaczorowski ◽  
Debabrata Panja ◽  
Timothy J. Peters ◽  
Clive R. Bramham ◽  
...  

2021 ◽  
Author(s):  
Yujun Guo ◽  
Guichang Zou ◽  
Keke Qi ◽  
Jin Jin ◽  
Lei Yao ◽  
...  

Abstract Lipophilic statins which are blood brain barrier (BBB) permeable are speculated to affect the cholesterol synthesis and neural functions in the central nervous system. However, whether these statins can affect cholesterol levels and synaptic plasticity in hippocampus and the in vivo consequence remain unclear. Here, we report that long-term subcutaneous treatments of simvastatin significantly impair mouse hippocampal synaptic plasticity, reflected by the attenuated long-term potentiation of field excitatory postsynaptic potentials. The simvastatin administration causes a deficiency in recognition and spatial memory but fails to affect motor ability and anxiety behaviors in the mice. Mass spectrometry imaging indicates a significant decrease in cholesterol intensity in hippocampus of the mice receiving chronic simvastatin treatments. Such effects of simvastatin are transient because drug discontinuation can restore the hippocampal cholesterol level and synaptic plasticity and the memory function. These findings may provide further clues to elucidate the mechanisms of neurological side effects, especially the brain cognitive


Author(s):  
Arianna Maffei

Synaptic connections in the brain can change their strength in response to patterned activity. This ability of synapses is defined as synaptic plasticity. Long lasting forms of synaptic plasticity, long-term potentiation (LTP), and long-term depression (LTD), are thought to mediate the storage of information about stimuli or features of stimuli in a neural circuit. Since its discovery in the early 1970s, synaptic plasticity became a central subject of neuroscience, and many studies centered on understanding its mechanisms, as well as its functional implications.


Sign in / Sign up

Export Citation Format

Share Document