scholarly journals Dopamine Neuron Responses Depend Exponentially on Pacemaker Interval

2009 ◽  
Vol 101 (2) ◽  
pp. 926-933 ◽  
Author(s):  
Ilva Putzier ◽  
Paul H. M. Kullmann ◽  
John P. Horn ◽  
Edwin S. Levitan

Midbrain dopamine neuron activity results from the integration of the responses to metabo- and ionotropic receptors with the postsynaptic excitability of these intrinsic pacemakers. Interestingly, intrinsic pacemaker rate varies greatly between individual dopamine neurons and is subject to short- and long-term regulation. Here responses of substantia nigra dopamine neurons to defined dynamic-clamp stimuli were measured to quantify the impact of cell-to-cell variation in intrinsic pacemaker rate. Then this approach was repeated in single dopamine neurons in which pacemaker rate was altered by activation of muscarinic receptors or current injection. These experiments revealed a dramatic exponential dependence on pacemaker interval for the responses to voltage-gated A-type K+ channels, voltage-independent cation channels and ionotropic synapses. Likewise, responses to native metabotropic (GABAb and mGluR1) inhibitory synapses depended steeply on pacemaker interval. These results show that observed variations in dopamine neuron pacemaker rate are functionally significant because they produce a >10-fold difference in responses to diverse stimuli. Both the magnitude and the mathematical form of the relationship between pacemaker interval and responses were not previously anticipated.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Malou Dongelmans ◽  
Romain Durand-de Cuttoli ◽  
Claire Nguyen ◽  
Maxime Come ◽  
Etienne K. Duranté ◽  
...  

AbstractLong-term exposure to nicotine alters brain circuits and induces profound changes in decision-making strategies, affecting behaviors both related and unrelated to drug seeking and consumption. Using an intracranial self-stimulation reward-based foraging task, we investigated in mice the impact of chronic nicotine on midbrain dopamine neuron activity and its consequence on the trade-off between exploitation and exploration. Model-based and archetypal analysis revealed substantial inter-individual variability in decision-making strategies, with mice passively exposed to nicotine shifting toward a more exploitative profile compared to non-exposed animals. We then mimicked the effect of chronic nicotine on the tonic activity of dopamine neurons using optogenetics, and found that photo-stimulated mice adopted a behavioral phenotype similar to that of mice exposed to chronic nicotine. Our results reveal a key role of tonic midbrain dopamine in the exploration/exploitation trade-off and highlight a potential mechanism by which nicotine affects the exploration/exploitation balance and decision-making.


2017 ◽  
Author(s):  
Benjamin T. Saunders ◽  
Jocelyn M. Richard ◽  
Elyssa B. Margolis ◽  
Patricia H. Janak

Environmental cues, through Pavlovian learning, become conditioned stimuli that guide animals towards the acquisition of “rewards” (i.e., food) that are necessary for survival. Here, we test the fundamental role of midbrain dopamine neurons in conferring predictive or motivational properties to cues, independent of external rewards. We demonstrate that phasic optogenetic excitation of dopamine neurons throughout the midbrain, when presented in temporal association with discrete sensory cues, is sufficient to instantiate those cues as conditioned stimuli that subsequently both evoke dopamine neuron activity on their own, and elicit cue-locked conditioned behaviors. Critically, we identify highly parcellated behavioral functions for dopamine neuron subpopulations projecting to discrete regions of striatum, revealing dissociable mesostriatal systems for the generation of incentive value and movement invigoration. These results show that dopamine neurons orchestrate Pavlovian conditioning via functionally heterogeneous, circuit-specific motivational signals to shape cue-controlled behavior.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Amanda L. Brown ◽  
Trevor A. Day ◽  
Christopher V. Dayas ◽  
Doug W. Smith

The ability to microdissect individual cells from the nervous system has enormous potential, as it can allow for the study of gene expression in phenotypically identified cells. However, if the resultant gene expression profiles are to be accurately ascribed, it is necessary to determine the extent of contamination by nontarget cells in the microdissected sample. Here, we show that midbrain dopamine neurons can be laser-microdissected to a high degree of enrichment and purity. The average enrichment for tyrosine hydroxylase (TH) gene expression in the microdissected sample relative to midbrain sections was approximately 200-fold. For the dopamine transporter (DAT) and the vesicular monoamine transporter type 2 (Vmat2), average enrichments were approximately 100- and 60-fold, respectively. Glutamic acid decarboxylase (Gad65) expression, a marker for GABAergic neurons, was several hundredfold lower than dopamine neuron-specific genes. Glial cell and glutamatergic neuron gene expression were not detected in microdissected samples. Additionally, SN and VTA dopamine neurons had significantly different expression levels of dopamine neuron-specific genes, which likely reflects functional differences between the two cell groups. This study demonstrates that it is possible to laser-microdissect dopamine neurons to a high degree of cell purity. Therefore gene expression profiles can be precisely attributed to the targeted microdissected cells.


2015 ◽  
Vol 114 (3) ◽  
pp. 1734-1745 ◽  
Author(s):  
Katherine Stuhrman ◽  
Aaron G. Roseberry

Dopamine is an essential neurotransmitter that plays an important role in a number of different physiological processes and disorders. There is substantial evidence that the neuropeptide neurotensin interacts with the mesolimbic dopamine system and can regulate dopamine neuron activity. In these studies we have used whole cell patch-clamp electrophysiology in brain slices from mice to examine how neurotensin regulates dopamine neuron activity by examining the effect of neurotensin on the inhibitory postsynaptic current generated by somatodendritic dopamine release (D2R IPSC) in ventral tegmental area (VTA) dopamine neurons. Neurotensin inhibited the D2R IPSC and activated an inward current in VTA dopamine neurons that appeared to be at least partially mediated by activation of a transient receptor potential C-type channel. Neither the inward current nor the inhibition of the D2R IPSC was affected by blocking PKC or calcium release from intracellular stores, and the inhibition of the D2R IPSC was greater with neurotensin compared with activation of other Gq-coupled receptors. Interestingly, the effects of neurotensin were not specific to D2R signaling as neurotensin also inhibited GABAB inhibitory postsynaptic currents in VTA dopamine neurons. Finally, the effects of neurotensin were significantly larger when intracellular Ca2+ was strongly buffered, suggesting that reduced intracellular calcium facilitates these effects. Overall these results suggest that neurotensin may inhibit the D2R and GABAB IPSCs downstream of receptor activation, potentially through regulation of G protein-coupled inwardly rectifying potassium channels. These studies provide an important advance in our understanding of dopamine neuron activity and how it is controlled by neurotensin.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Peng Zhong ◽  
Casey R Vickstrom ◽  
Xiaojie Liu ◽  
Ying Hu ◽  
Laikang Yu ◽  
...  

Dopamine neurons in the ventral tegmental area (VTA) are powerful regulators of depression-related behavior. Dopamine neuron activity is altered in chronic stress-based models of depression, but the underlying mechanisms remain incompletely understood. Here, we show that mice subject to chronic mild unpredictable stress (CMS) exhibit anxiety- and depressive-like behavior, which was associated with decreased VTA dopamine neuron firing in vivo and ex vivo. Dopamine neuron firing is governed by voltage-gated ion channels, in particular hyperpolarization-activated cyclic nucleotide-gated (HCN) channels. Following CMS, HCN-mediated currents were decreased in nucleus accumbens-projecting VTA dopamine neurons. Furthermore, shRNA-mediated HCN2 knockdown in the VTA was sufficient to recapitulate CMS-induced depressive- and anxiety-like behavior in stress-naïve mice, whereas VTA HCN2 overexpression largely prevented CMS-induced behavioral deficits. Together, these results reveal a critical role for HCN2 in regulating VTA dopamine neuronal activity and depressive-related behaviors.


2019 ◽  
Vol 116 (9) ◽  
pp. 3817-3826 ◽  
Author(s):  
Alessandro Pristerà ◽  
Craig Blomeley ◽  
Emanuel Lopes ◽  
Sarah Threlfell ◽  
Elisa Merlini ◽  
...  

Midbrain dopamine neurons, which can be regulated by neuropeptides and hormones, play a fundamental role in controlling cognitive processes, reward mechanisms, and motor functions. The hormonal actions of insulin-like growth factor 1 (IGF-1) produced by the liver have been well described, but the role of neuronally derived IGF-1 remains largely unexplored. We discovered that dopamine neurons secrete IGF-1 from the cell bodies following depolarization, and that IGF-1 controls release of dopamine in the ventral midbrain. In addition, conditional deletion of dopamine neuron-derived IGF-1 in adult mice leads to decrease of dopamine content in the striatum and deficits in dopamine neuron firing and causes reduced spontaneous locomotion and impairments in explorative and learning behaviors. These data identify that dopamine neuron-derived IGF-1 acts as a regulator of dopamine neurons and regulates dopamine-mediated behaviors.


2021 ◽  
Author(s):  
Linda Requie ◽  
Marta Gómez-Gonzalo ◽  
Francesca Managò ◽  
Mauro Congiu ◽  
Marcello Melone ◽  
...  

Abstract The plasticity of glutamatergic transmission in the Ventral Tegmental Area (VTA) represents a fundamental mechanism in the modulation of dopamine neuron burst firing and the phasic dopamine release at VTA target regions. These processes encode basic behavioral responses, including locomotor activity, learning and motivated-behaviors. Here we describe a hitherto unidentified mechanism of long-lasting potentiation of glutamatergic synapses on DA neurons. We found that VTA astrocytes respond to dopamine neuron bursts with Ca2+ elevations that require activation of endocannabinoid CB1 and dopamine D2 receptors colocalized at the same astrocytic process. Astrocytes, in turn, release glutamate that, through presynaptic metabotropic glutamate receptor activation coupled with neuronal nitric oxide production, induces long-lasting potentiation of excitatory synapses on adjacent dopamine neurons. Consistent with this finding, selective activation of VTA astrocytes increases dopamine neuron bursts in vivo and induces locomotor hyperactivity. Astrocytes play, therefore, a key role in the modulation of VTA dopamine neuron activity.


Author(s):  
Zhijun Diao ◽  
Li Yao ◽  
Qiangqiang Cheng ◽  
Meilin Wu ◽  
Yuanyuan Di ◽  
...  

2020 ◽  
Author(s):  
Yawei Wang ◽  
Osamu Toyoshima ◽  
Jun Kunimatsu ◽  
Hiroshi Yamada ◽  
Masayuki Matsumoto

AbstractAppropriate actions are taken based on the values of future rewards. The phasic activity of midbrain dopamine neurons signals these values. Because reward values often change over time, even on a subsecond-by-subsecond basis, appropriate action selection requires continuous value monitoring. However, the phasic dopamine activity, which is sporadic and has a short duration, likely fails continuous monitoring. Here, we demonstrate a tonic firing mode of dopamine neurons that effectively tracks changing reward values. We recorded dopamine neuron activity in monkeys during a Pavlovian procedure in which the value of a cued reward gradually increased or decreased. Dopamine neurons tonically increased and decreased their activity as the reward value changed. This tonic activity was evoked more strongly by non-burst spikes than burst spikes producing a conventional phasic activity. Our findings suggest that dopamine neurons change their firing mode to effectively signal reward values, which could underlie action selection in changing environments.


Sign in / Sign up

Export Citation Format

Share Document