scholarly journals Direction and Contrast Tuning of Macaque MSTd Neurons During Saccades

2009 ◽  
Vol 101 (6) ◽  
pp. 3100-3107 ◽  
Author(s):  
Nathan A. Crowder ◽  
Nicholas S. C. Price ◽  
Michael J. Mustari ◽  
Michael R. Ibbotson

Saccades are rapid eye movements that change the direction of gaze, although the full-field image motion associated with these movements is rarely perceived. The attenuation of visual perception during saccades is referred to as saccadic suppression. The mechanisms that produce saccadic suppression are not well understood. We recorded from neurons in the dorsal medial superior temporal area (MSTd) of alert macaque monkeys and compared the neural responses produced by the retinal slip associated with saccades (active motion) to responses evoked by identical motion presented during fixation (passive motion). We provide evidence for a neural correlate of saccadic suppression and expand on two contentious results from previous studies. First, we confirm the finding that some neurons in MSTd reverse their preferred direction during saccades. We quantify this effect by calculating changes in direction tuning index for a large cell population. Second, it has been noted that neural activity associated with saccades can arrive in the parietal cortex ≤30 ms earlier than activity produced by similar visual stimulation during fixation. This led to the question of whether the saccade-related responses were visual in origin or were motor signals arising from saccade-planning areas of the brain. By comparing the responses to saccades made over textured backgrounds of different contrasts, we provide strong evidence that saccade-related responses were visual in origin. Refinements of the possible models of saccadic suppression are discussed.

2005 ◽  
Vol 94 (2) ◽  
pp. 1084-1090 ◽  
Author(s):  
Anne K. Churchland ◽  
Stephen G. Lisberger

We have used antidromic activation to determine the functional discharge properties of neurons that project to the frontal pursuit area (FPA) from the medial-superior temporal visual area (MST). In awake rhesus monkeys, MST neurons were considered to be activated antidromically if they emitted action potentials at fixed, short latencies after stimulation in the FPA and if the activation passed the collision test. Antidromically activated neurons ( n = 37) and a sample of the overall population of MST neurons ( n = 110) then were studied during pursuit eye movements across a dark background and during laminar motion of a large random-dot texture and optic flow expansion and contraction during fixation. Antidromically activated neurons showed direction tuning during pursuit (25/37), during laminar image motion (21/37), or both (16/37). Of 27 neurons tested with optic flow stimuli, 14 showed tuning for optic flow expansion ( n = 10) or contraction ( n = 4). There were no statistically significant differences in the response properties of the antidromically activated and control samples. Preferred directions for pursuit and laminar image motion did not show any statistically significant biases, and the preferred directions for eye versus image motion in each sample tended to be equally divided between aligned and opposed. There were small differences between the control and antidromically activated populations in preferred speeds for laminar motion and optic flow; these might have reached statistical significance with larger samples of antidromically activated neurons. We conclude that the population of MST neurons projecting to the FPA is highly diverse and quite similar to the general population of neurons in MST.


1988 ◽  
Vol 60 (2) ◽  
pp. 621-644 ◽  
Author(s):  
H. Komatsu ◽  
R. H. Wurtz

1. Pursuit eye movements are usually made against a visual background that is moved across the retina by the pursuit movement. We have investigated the effect of this visual stimulation on the response of pursuit cells that lie within the superior temporal sulcus (STS) of the monkey. 2. We assigned these pursuit cells to one of two groups depending on the nature of their preferred visual stimulus. One group of cells, comprising all cells located in the dorsal-medial region of the medial superior temporal area (MSTd) and some cells in lateral-anterior MST (MST1), responded to the motion of a large patterned field but showed little or no response to small spots or slits. The other group, consisting of all foveal middle temporal area (MTf) cells and many MST1 cells, responded preferentially to small spot motion or equally well to small spot motion or large field. 3. For many pursuit cells that preferred large-field stimuli, the visual response showed a reversal of the preferred direction of motion as the size of the stimulus field increased. The reversal usually occurred as the size of the moving random-dot field used as a stimulus increased in size from 20 x 20 degrees to 30 x 30 degrees for motion at approximately 10 degrees/s. The size of the filed stimulus leading to reversal of preferred direction depended on the speed of stimulus motion. Higher speeds of motion required larger stimulus fields to produce a reversal of preferred direction. This reversal (of preferred direction) did not reflect a center-surround organization of the receptive field but seemed to reflect the spatial summation properties of these cells. 4. For three-quarters of the cells that preferred large-field stimulation, the preferred direction of motion for the large field was opposite to the preferred direction of the pursuit response. The remaining cells showed either the same preferred directions for large-field visual stimulation and the pursuit response or had bidirectional visual responses. If we consider only the cells that show a reversal of preferred direction for large- and small-field stimuli, the preferred direction for the large field was always the opposite to that of pursuit, and the preferred direction for the small field was always the same. 5. During pursuit against a lighted background, the cells that showed opposite preferred directions for large-field stimulation and pursuit had synergistic responses--a facilitation of the pursuit response over the response during pursuit in the dark. Slow pursuit speeds (less than 20 degrees/s) produced the greatest facilitation.(ABSTRACT TRUNCATED AT 400 WORDS)


2014 ◽  
Vol 112 (10) ◽  
pp. 2470-2480 ◽  
Author(s):  
Andre Kaminiarz ◽  
Anja Schlack ◽  
Klaus-Peter Hoffmann ◽  
Markus Lappe ◽  
Frank Bremmer

The patterns of optic flow seen during self-motion can be used to determine the direction of one's own heading. Tracking eye movements which typically occur during everyday life alter this task since they add further retinal image motion and (predictably) distort the retinal flow pattern. Humans employ both visual and nonvisual (extraretinal) information to solve a heading task in such case. Likewise, it has been shown that neurons in the monkey medial superior temporal area (area MST) use both signals during the processing of self-motion information. In this article we report that neurons in the macaque ventral intraparietal area (area VIP) use visual information derived from the distorted flow patterns to encode heading during (simulated) eye movements. We recorded responses of VIP neurons to simple radial flow fields and to distorted flow fields that simulated self-motion plus eye movements. In 59% of the cases, cell responses compensated for the distortion and kept the same heading selectivity irrespective of different simulated eye movements. In addition, response modulations during real compared with simulated eye movements were smaller, being consistent with reafferent signaling involved in the processing of the visual consequences of eye movements in area VIP. We conclude that the motion selectivities found in area VIP, like those in area MST, provide a way to successfully analyze and use flow fields during self-motion and simultaneous tracking movements.


1993 ◽  
Vol 69 (4) ◽  
pp. 1314-1322 ◽  
Author(s):  
T. X. Fan ◽  
A. F. Rosenberg ◽  
M. Ariel

1. Single units were recorded extracellularly in the turtle's cerebellar cortex from an isolated brain preparation during visual stimulation. Only a small fraction of the isolated units responded to visual stimuli. For these visually responsive units, the most effective visual stimulus was a moving check pattern that covered the entire surface of the retinal eyecup. The visually responsive units had little or no spontaneous spike activity, nor were they driven by flashes of diffuse light or stationary patterns. 2. All the visually responsive units were direction sensitive and were driven exclusively by the contralateral eye. This direction tuning was well fit by a limacon model (mean correlation coefficient, 0.89). The distribution of the entire sample indicates a slight preponderance of upward preferred directions. 3. The direction tuning of these cerebellar units was independent of stimulus contrast or the pattern's configuration (such as checkerboards or random check or dot patterns). In the preferred direction, a unit's spike frequency increased monotonically as a function of stimulus velocity until approximately 10 degrees/s, but remained direction sensitive (relative to the opposite direction) at speeds as fast as 100 degrees/s. 4. In some experiments the ventrocaudal brain stem was transected in the frontal plane just caudal to the cerebellar peduncles. Although this lesion presumably removes climbing fiber input from the inferior olivary nuclei, the visual-response properties in the cerebellar cortex were unaffected. 5. The response properties of these units indicate that they encode retinal slip information in the cerebellum.(ABSTRACT TRUNCATED AT 250 WORDS)


Cephalalgia ◽  
2010 ◽  
Vol 31 (3) ◽  
pp. 338-345 ◽  
Author(s):  
Andrea Antal ◽  
Rafael Polania ◽  
Katharina Saller ◽  
Carmen Morawetz ◽  
Carsten Schmidt-Samoa ◽  
...  

Objective: Differences between people with and without migraine on various measures of visual perception have been attributed to abnormal cortical processing due to the disease. The aim of the present study was to explore the dynamics of the basic interictal state with regard to the extrastriate, motion-responsive middle temporal area (MT-complex) with functional magnetic resonance imaging (fMRI) at 3 tesla using coherent/incoherent moving dot stimuli. Method: Twenty-four migraine patients (12 with aura [MwA], 12 without aura [MwoA]) and 12 healthy subjects participated in the study. The individual cortical folding pattern was accounted for by using a cortical matching approach. Results: In the inferior-posterior portion of the MT-complex, most likely representing MT, control subjects showed stronger bilateral activation compared to MwA and MwoA patients. Compared with healthy controls MwoA and MwA patients showed significantly stronger activation mainly at the left side in response to visual stimulation in the superior-anterior portion of the MT-complex, representing the medial-superior temporal area (MST). Conclusion: Our findings strengthen the hypothesis that hyperresponsiveness of the visual cortex in migraine goes beyond early visual areas, even in the interictal period.


2019 ◽  
Vol 121 (4) ◽  
pp. 1207-1221 ◽  
Author(s):  
Ryo Sasaki ◽  
Dora E. Angelaki ◽  
Gregory C. DeAngelis

Multiple areas of macaque cortex are involved in visual motion processing, but their relative functional roles remain unclear. The medial superior temporal (MST) area is typically divided into lateral (MSTl) and dorsal (MSTd) subdivisions that are thought to be involved in processing object motion and self-motion, respectively. Whereas MSTd has been studied extensively with regard to processing visual and nonvisual self-motion cues, little is known about self-motion signals in MSTl, especially nonvisual signals. Moreover, little is known about how self-motion and object motion signals interact in MSTl and how this differs from interactions in MSTd. We compared the visual and vestibular heading tuning of neurons in MSTl and MSTd using identical stimuli. Our findings reveal that both visual and vestibular heading signals are weaker in MSTl than in MSTd, suggesting that MSTl is less well suited to participate in self-motion perception than MSTd. We also tested neurons in both areas with a variety of combinations of object motion and self-motion. Our findings reveal that vestibular signals improve the separability of coding of heading and object direction in both areas, albeit more strongly in MSTd due to the greater strength of vestibular signals. Based on a marginalization technique, population decoding reveals that heading and object direction can be more effectively dissociated from MSTd responses than MSTl responses. Our findings help to clarify the respective contributions that MSTl and MSTd make to processing of object motion and self-motion, although our conclusions may be somewhat specific to the multipart moving objects that we employed. NEW & NOTEWORTHY Retinal image motion reflects contributions from both the observer’s self-motion and the movement of objects in the environment. The neural mechanisms by which the brain dissociates self-motion and object motion remain unclear. This study provides the first systematic examination of how the lateral subdivision of area MST (MSTl) contributes to dissociating object motion and self-motion. We also examine, for the first time, how MSTl neurons represent translational self-motion based on both vestibular and visual cues.


1997 ◽  
Vol 14 (4) ◽  
pp. 633-646 ◽  
Author(s):  
S.J. Schaafsma ◽  
J. Duysens ◽  
C.C.A.M. Gielen

AbstractThere is evidence that neurons in medial superior temporal area (MST) respond to rotation in depth of textured planes. MST neurons project to the ventral intraparietal area (VIP) and the question arises whether VIP neurons are responsive to rotation in depth as well. In the present study on awake monkeys, we have simulated movement of a flat board, covered with dots, by a computer. The two-dimensional images corresponded to the projection of structured planes rotating around a fronto-parallel axis. In the literature this stimulus is called fanning. Fanning effectively induced responses in VIP neurons. Most often the responses were nearly as strong as for translation, expansion/contraction, or rotation, indicating that there was no special sensitivity for rotation in depth. For neurons, sensitive to expansion, the response to fanning could often be explained by the positioning of the expanding part of the fanning stimulus over the area which was most responsive to expansion. For neurons which were direction selective to translation, the optimal direction of fanning was usually the same as the preferred direction for translation. It is concluded that VIP neurons may be sensitive to movement of structured planes but they are not specialized for the detection of such movement.


1998 ◽  
Vol 80 (4) ◽  
pp. 1816-1827 ◽  
Author(s):  
Charles J. Duffy

Duffy, Charles J. MST neurons respond to optic flow and translational movement . J. Neurophysiol. 80: 1816–1827, 1998. We recorded the responses of 189 medial superior temporal area (MST) neurons by using optic flow, real translational movement, and combined stimuli in which matching directions of optic flow and real translational movement were presented together. One-half of the neurons (48%) showed strong responses to optic flow simulating self-movement in the horizontal plane, and 24% showed strong responses to translational movement. Combining optic flow stimuli with matching directions of translational movement caused substantial changes in both the amplitude of the best responses (44% of neurons) and the strength of direction selectivity (71% of neurons), with little effect on which stimulus direction was preferred. However, combining optic flow and translational movement such that opposite directions were presented together changed the preferred direction in 45% of the neurons with substantial changes in the strength of direction selectivity. These studies suggest that MST neurons combine visual and vestibular signals to enhance self-movement detection and disambiguate optic flow that results from either self-movement or the movement of large objects near the observer.


2002 ◽  
Vol 88 (6) ◽  
pp. 3469-3476 ◽  
Author(s):  
Richard J. A. Van Wezel ◽  
Kenneth H. Britten

In many sensory systems, exposure to a prolonged stimulus causes adaptation, which tends to reduce neural responses to subsequent stimuli. Such effects are usually stimulus-specific, making adaptation a powerful probe into information processing. We used dynamic random dot kinematograms to test the magnitude and selectivity of adaptation effects in the middle temporal area (MT) and to compare them to effects on human motion discrimination. After 3 s of adaptation to a random dot pattern moving in the preferred direction, MT neuronal responses to subsequent test patterns were reduced by 26% on average compared with adaptation to a static pattern. This reduction in response magnitude was largely independent of what test stimulus was presented. However, adaptation in the opposite direction changed responses less often and very inconsistently. Therefore motion adaptation systematically and profoundly affects the neurons in MT representing the adapted direction, but much less those representing the opposite direction. In human psychophysical experiments, such adapting stimuli affected direction discrimination, biasing choices away from the adaptation direction. The magnitude of this perceptual shift was consistent with the magnitude of the changes seen in area MT, if one assumes that a motion comparison step occurs after MT.


1999 ◽  
Vol 82 (5) ◽  
pp. 2462-2475 ◽  
Author(s):  
Satoshi Eifuku ◽  
Robert H. Wurtz

Many neurons in the lateral-ventral region of the medial superior temporal area (MSTl) have a clear center surround separation in their receptive fields. Either moving or stationary stimuli in the surround modulates the response to moving stimuli in the center, and this modulation could facilitate the perceptual segmentation of a moving object from its background. Another mechanism that could facilitate such segmentation would be sensitivity to binocular disparity in the center and surround regions of the receptive fields of these neurons. We therefore investigated the sensitivity of these MSTl neurons to disparity ranging from three degrees crossed disparity (near) to three degrees uncrossed disparity (far) applied to both the center and the surround regions. Many neurons showed clear disparity sensitivity to stimulus motion in the center of the receptive field. About [Formula: see text] of 104 neurons had a clear peak in their response, whereas another [Formula: see text] had broader tuning. Monocular stimulation abolished the tuning. The prevalence of cells broadly tuned to near and far disparity and the reversal of preferred directions at different disparities observed in MSTd were not found in MSTl. A stationary surround at zero disparity simply modulated up or down the response to moving stimuli at different disparities in the receptive field (RF) center but did not alter the disparity tuning curve. When the RF center motion was held at zero disparity and the disparity of the stationary surround was varied, some surround disparities produced greater modulation of MSTl neuron response than did others. Some neurons with different disparity preferences in center and surround responded best to the relative disparity differences between center and surround, whereas others were related to the absolute difference between center and surround. The combination of modulatory surrounds and the sensitivity to relative difference between center and surround disparity make these MSTl neurons particularly well suited for the segmentation of a moving object from the background.


Sign in / Sign up

Export Citation Format

Share Document