scholarly journals Genomic dissection of the cytokine-controlled STAT5 signaling network in liver

2008 ◽  
Vol 34 (2) ◽  
pp. 135-143 ◽  
Author(s):  
Atsushi Hosui ◽  
Lothar Hennighausen

Growth hormone (GH) controls the physiology and pathophysiology of the liver, and its signals are conducted by two members of the family of signal transducers and activators of transcription, STAT5A and STAT5B. Mice in which the Stat5a/b locus has been inactivated specifically in hepatocytes display GH resistance, the sex-specific expression of genes associated with liver metabolism and the cytochrome P-450 system is lost, and they develop hepatosteatosis. Several groups have shown by global gene expression profiling that a cadre of STAT5A/B target genes identify genetic cascades induced by GH and other cytokines. Evidence is accumulating that in the absence of STAT5A/B GH aberrantly activates STAT1 and STAT3 and their downstream target genes and thereby offers a partial explanation of some of the physiological alterations observed in Stat5a/b-null mice and human patients. We hypothesize that phenotypic changes observed in the absence of STAT5A/B are due to two distinct molecular consequences: first, the failure of STAT5A/B target genes to be activated by GH and second, the rerouting of GH signaling to other members of the STAT family. Rerouting of GH signaling to STAT1 and STAT3 might partially compensate for the loss of STAT5A/B, but it certainly activates biological programs distinct from STAT5A/B. Here we discuss the extent to which studies on global gene expression profiling have fostered a better understanding of the biology behind cytokine-STAT5A/B networks in hepatocytes. We also explore whether this wealth of information on gene activity can be used to further understand the roles of cytokines in liver disease.

2014 ◽  
Vol 82 (6) ◽  
pp. 897-909 ◽  
Author(s):  
Jolanta Kiewisz ◽  
Kamil Krawczynski ◽  
Pawel Lisowski ◽  
Agnieszka Blitek ◽  
Lech Zwierzchowski ◽  
...  

2005 ◽  
Vol 65 (12) ◽  
pp. 4993-4997 ◽  
Author(s):  
Denis A. Smirnov ◽  
Daniel R. Zweitzig ◽  
Bradley W. Foulk ◽  
M. Craig Miller ◽  
Gerald V. Doyle ◽  
...  

2011 ◽  
Vol 300 (1) ◽  
pp. F177-F188 ◽  
Author(s):  
Masanori Kugita ◽  
Kazuhiro Nishii ◽  
Miwa Morita ◽  
Daisuke Yoshihara ◽  
Hiroe Kowa-Sugiyama ◽  
...  

Han:SPRD Cy is a spontaneous rat model of polycystic kidney disease (PKD) caused by a missense mutation in Pkdr1. Cystogenesis in this model is not clearly understood. In the current study, we performed global gene expression profiling in early-stage PKD cyst development in Cy/Cy kidneys and normal (+/+) kidneys at 3 and 7 days of postnatal age. Expression profiles were determined by microarray analysis, followed by validation with real-time RT-PCR. Genes were selected with over 1.5-fold expression changes compared with age-matched +/+ kidneys for canonical pathway analysis. We found nine pathways in common between 3- and 7-day Cy/Cy kidneys. Three significantly changed pathways were designated “Vitamin D Receptor (VDR)/Retinoid X Receptor (RXR) Activation,” “LPS/IL-1-Mediated Inhibition of RXR Function,” and “Liver X Receptor (LXR)/RXR Activation.” These results suggest that RXR-mediated signaling is significantly altered in developing kidneys with mutated Pkdr1. In gene ontology analysis, the functions of these RXR-related genes were found to be involved in regulating cell proliferation and organ morphogenesis. With real-time RT-PCR analysis, the upregulation of Ptx2, Alox15b, OSP, and PCNA, major markers of cell proliferation associated with the RXR pathway, were confirmed in 3- and 7-day Cy/Cy kidneys compared with 3-day +/+ kidneys. The increased RXR protein was observed in both the nucleus and cytoplasm of cystic epithelial cells in early-stage Cy/Cy kidneys, and the RXR-positive cells were strongly positive for PCNA staining. Taken together, cell proliferation and organ morphogenesis signals transduced by RXR-mediated pathways may have important roles for cystogenesis in early-stage PKD in this Pkdr1-mutated Cy rat.


Sign in / Sign up

Export Citation Format

Share Document