scholarly journals Gene expression profiles in peripheral blood mononuclear cells of chronic heart failure patients

2009 ◽  
Vol 38 (3) ◽  
pp. 233-240 ◽  
Author(s):  
Claudia Cappuzzello ◽  
Monica Napolitano ◽  
Diego Arcelli ◽  
Guido Melillo ◽  
Roberta Melchionna ◽  
...  

The present study was aimed at identifying chronic heart failure (CHF) biomarkers from peripheral blood mononuclear cells (PBMCs) in patients with ischemic (ICM) and nonischemic dilated (NIDCM) cardiomyopathy. PBMC gene expression profiling was performed by Affymetrix in two patient groups, 1) ICM ( n = 12) and 2) NIDCM ( n = 12) New York Heart Association (NYHA) III/IV CHF patients, vs. 3) age- and sex-matched control subjects ( n = 12). Extracted RNAs were then pooled and hybridized to a total of 11 microarrays. Gene ontology (GO) analysis separated gene profiling into functional classes. Prediction analysis of microarrays (PAM) and significance analysis of microarrays (SAM) were utilized in order to identify a molecular signature. Candidate markers were validated by quantitative real-time polymerase chain reaction. We identified a gene expression profiling that distinguished between CHF patients and control subjects. Interestingly, among the set of genes constituting the signature, chemokine receptor (CCR2, CX3CR1) and early growth response (EGR1, 2, 3) family members were found to be upregulated in CHF patients vs. control subjects and to be part of a gene network. Such findings were strengthened by the analysis of an additional 26 CHF patients ( n = 14 ICM and n = 12 NIDCM), which yielded similar results. The present study represents the first large-scale gene expression analysis of CHF patient PBMCs that identified a molecular signature of CHF and putative biomarkers of CHF, i.e., chemokine receptor and EGR family members. Furthermore, EGR1 expression levels can discriminate between ICM and NIDCM CHF patients.

2010 ◽  
Vol 42 (3) ◽  
pp. 420-426 ◽  
Author(s):  
Christine Voellenkle ◽  
Jeroen van Rooij ◽  
Claudia Cappuzzello ◽  
Simona Greco ◽  
Diego Arcelli ◽  
...  

MicroRNAs (miRNAs) are noncoding RNAs that act as negative regulators of gene expression. Interestingly, specific alterations of miRNA expression have been found in failing hearts of different etiologies. The aim of this study was to identify the miRNA expression pattern of peripheral blood mononuclear cells (PBMCs) derived from chronic heart failure (CHF) patients affected by ischemic (ICM) and nonischemic dilated (NIDCM) cardiomyopathy. The expression profile of 257 miRNAs was assessed in 7 NIDCM patients, 8 ICM patients, and 9 control subjects by quantitative real-time PCR. Significantly modulated miRNAs were validated by using an independent set of 34 CHF patients (NIDCM = 19, ICM = 15) and 19 control subjects. Three miRNAs (miR-107, -139, and -142-5p) were downmodulated in both NIDCM and ICM patients versus control subjects. Other miRNAs were deregulated in only one of the CHF classes analyzed compared with control subjects: miR-142-3p and -29b were increased in NIDCM patients, while miR-125b and -497 were decreased in ICM patients. Bioinformatic analysis of miRNA predicted targets and of gene expression modifications associated with CHF in PBMCs indicated a significant impact of the miRNA signature on the transcriptome. Furthermore, miRNAs of both the NIDCM and the ICM signature shared predicted targets among CHF-modulated genes, suggesting potential additive or synergistic effects. The present study identified miRNAs specifically modulated in the PBMCs of NIDCM and ICM patients. Intriguingly, most of these miRNAs were previously reported as deregulated in human and/or mouse failing hearts. The identified miRNAs might have a potential diagnostic and/or prognostic use in CHF.


Sign in / Sign up

Export Citation Format

Share Document