flow cytometry analysis
Recently Published Documents


TOTAL DOCUMENTS

642
(FIVE YEARS 204)

H-INDEX

36
(FIVE YEARS 6)

2022 ◽  
Vol 3 (1) ◽  
pp. 101052
Author(s):  
Keiko Sakamoto ◽  
Shubham Goel ◽  
Atsuko Funakoshi ◽  
Tetsuya Honda ◽  
Keisuke Nagao

2021 ◽  
Author(s):  
Chisato Kaneko ◽  
Haruka Tsutsui ◽  
Kazuhisa Ozeki ◽  
Masaki Honda ◽  
Kenta Haraya ◽  
...  

Abstract STA551, a novel anti-CD137 switch antibody, binds to CD137 in an extracellular ATP (exATP) concentration dependent manner. Although STA551 was assumed to show higher target binding in tumor than normal tissues, quantitative detection of the target binding of switch antibody in vivo is technically challenging. In this study, we investigated the target binding of STA551 in vivo using intravital imaging with two-photon microscopy. Tumor-bearing human CD137 knock-in mice were intravenously administered 1 mg/kg of fluorescent-labeled antibodies at day 0 and 3. Flow cytometry analysis of antibody-binding cells and intravital imaging using two-photon microscopy was conducted at day4. Higher CD137 expression in tumor than spleen was detected by flow cytometry analysis, and T cells and NK cells were major CD137 expressing cells. In the intravital imaging experiment, conventional and switch anti-CD137 antibody showed binding in tumor. However, in spleen, the fluorescence of switch antibody was much weaker than conventional anti-CD137 antibody and comparable with isotype control. In conclusion, we could assess switch antibody biodistribution in vivo through intravital imaging with two-photon microscopy. These results suggested that the tumor selective binding of STA551 leads to a wide therapeutic window and potent antitumor efficacy without systemic immune activation.


Pharmacology ◽  
2021 ◽  
pp. 1-7
Author(s):  
Atsuhito Kubota ◽  
Masaru Terasaki ◽  
Rie Takai ◽  
Masaki Kobayashi ◽  
Ryuta Muromoto ◽  
...  

<b><i>Introduction:</i></b> 5-Aminosalicylic acid (5-ASA) is widely used as a key drug in inflammatory bowel disease. It has been recently reported that 5-ASA induces CD4 + Foxp3 + regulatory T cells (Tregs) in the colon via the aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor that regulates inflammation. However, the role of 5-ASA as an AhR agonist that induces Tregs in the spleen remains unknown. <b><i>Methods:</i></b> In the present study, we investigated these themes using an AhR-mediated transactivation assay and flow cytometry analysis. The experiments were conducted by using DR-EcoScreen cells and C57BL/6 mice. <b><i>Results:</i></b> The DR-EcoScreen cell-based transactivation assay revealed that 5-ASA acted as a weak AhR agonist at concentrations of ≥300 μM (1.31–1.45-fold), and that a typical AhR agonist, 2,3,7,8-tetrachlorodibenzo-<i>p</i>-dioxin (TCDD), activated AhR at a concentration of 0.1 nM (22.8-fold). In addition, the treatment of mouse splenic cells with 300 μM 5-ASA in a primary culture assay significantly induced CD4+CD25 + Foxp3 + Tregs (control vs. 5-ASA: 9.0% vs. 12.65%, <i>p</i> &#x3c; 0.05), while 0.1 nM TCDD also showed significant induction of Tregs (control vs. TCDD: 9.0% vs. 14.1%, <i>p</i> &#x3c; 0.05). Interestingly, this induction was eliminated by co-treatment with an AhR antagonist, CH-223191. <b><i>Discussion:</i></b> These results suggest that 5-ASA is a weak agonist of AhR and thereby induces Tregs in spleen cells. Our findings may provide useful insights into the mechanism by which 5-ASA regulates inflammation.


Author(s):  
Ibrahim Alkhaibari ◽  
Hansa Raj KC ◽  
Duminduni H Angappulige ◽  
David Gilmore ◽  
Mohammad A Alam

Background: Methicillin-resistant Staphylococcus aureus, vancomycin-resistant enterococci and Acinetobacter baumannii cause serious antibiotic-resistant infections. Finding new antibiotics to treat these infections is imperative for combating this worldwide menace. Methods & Results: In this study, the authors designed and synthesized potent antimicrobial agents using 4-trifluoromethylphenyl-substituted pyrazole derivatives. In addition to their potency against planktonic bacteria, potent compounds effectively eradicated S. aureus and Enterococcus faecalis biofilms. Human cells tolerated these compounds with good selectivity factors. Furthermore, the authors provide evidence for the mode of action of compounds based on time-kill kinetics, flow cytometry analysis of propidium iodide-treated bacteria and oxygen uptake studies. Conclusion: This study demonstrated 20 novel compounds with potent antibacterial activity that are tolerated by human cell lines.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Clément Delage ◽  
Nicolas Vignal ◽  
Coralie Guerin ◽  
Toufik Taib ◽  
Clément Barboteau ◽  
...  

AbstractTraumatic brain injury (TBI) leads to a deleterious neuroinflammation, originating from microglial activation. Monitoring microglial activation is an indispensable step to develop therapeutic strategies for TBI. In this study, we evaluated the use of the 18-kDa translocator protein (TSPO) in positron emission tomography (PET) and cellular analysis to monitor microglial activation in a mild TBI mouse model. TBI was induced on male Swiss mice. PET imaging analysis with [18F]FEPPA, a TSPO radiotracer, was performed at 1, 3 and 7 days post-TBI and flow cytometry analysis on brain at 1 and 3 days post-TBI. PET analysis showed no difference in TSPO expression between non-operated, sham-operated and TBI mice. Flow cytometry analysis demonstrated an increase in TSPO expression in ipsilateral brain 3 days post-TBI, especially in microglia, macrophages, lymphocytes and neutrophils. Moreover, microglia represent only 58.3% of TSPO+ cells in the brain. Our results raise the question of the use of TSPO radiotracer to monitor microglial activation after TBI. More broadly, flow cytometry results point the lack of specificity of TSPO for microglia and imply that microglia contribute to the overall increase in TSPO in the brain after TBI, but is not its only contributor.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Pan Jiang ◽  
Fan Li ◽  
Zilong Liu ◽  
Shengyu Hao ◽  
Jian Gao ◽  
...  

Abstract Background Growing evidence suggests that cancer stem cells (CSCs) are responsible for cancer initiation in tumors. Bach1 has been identified to contribute to several tumor progression, including lung cancer. The role of Bach1 in CSCs remains poorly known. Therefore, the function of Bach1 on lung CSCs was focused currently. Methods The expression of Bach1, CD133, CD44, Sox2, Nanog and Oct4 mRNA was assessed using Real-Time Quantitative Reverse Transcription PCR (RT-qPCR). Protein expression of Bach1, CD133, CD44, Sox2, Nanog, Oct4, p53, BCL2, BAX, p-p38, p-AKT1, c-Fos and c-Jun protein was analyzed by western blotting. 5-ethynyl-29-deoxyuridine (EdU), colony formation, Flow cytometry analysis and transwell invasion assay were carried out to analyze lung cancer cell proliferation, apoptosis and invasion respectively. Tumor sphere formation assay was utilized to evaluate spheroid capacity. Flow cytometry analysis was carried out to isolate CD133 or CD44 positive lung cancer cells. The relationship between Bach1 and CD44 was verified using ChIP-qPCR and dual-luciferase reporter assay. Xenograft tumor tissues were collected for hematoxylin and eosin (HE) staining and IHC analysis to evaluate histology and Ki-67. Results The ratio of CD44 + CSCs from A549 and SPC-A1 cells were significantly enriched. Tumor growth of CD44 + CSCs was obviously suppressed in vivo compared to CD44− CSCs. Bach1 expression was obviously increased in CD44 + CSCs. Then, via using the in vitro experiment, it was observed that CSCs proliferation and invasion were greatly reduced by the down-regulation of Bach1 while cell apoptosis was triggered by knockdown of Bach1. Loss of Bach1 was able to repress tumor-sphere formation and tumor-initiating CSC markers. A repression of CSCs growth and metastasis of shRNA-Bach1 was confirmed using xenograft models and caudal vein injection. The direct interaction between Bach1 and CD44 was confirmed by ChIP-qPCR and dual-luciferase reporter assay. Furthermore, mitogen-activated protein kinases (MAPK) signaling pathway was selected and we proved the effects of Bach1 on lung CSCs were associated with the activation of the MAPK pathway. As manifested, loss of Bach1 was able to repress p-p38, p-AKT1, c-Fos, c-Jun protein levels in lung CSCs. Inhibition of MAPK signaling remarkably restrained lung CSCs growth and CSCs properties induced by Bach1 overexpression. Conclusion In summary, we imply that Bach1 demonstrates great potential for the treatment of lung cancer metastasis and recurrence via activating CD44 and MPAK signaling.


2021 ◽  
Vol 948 (1) ◽  
pp. 012043
Author(s):  
R Q A’ yun ◽  
D Dinarti ◽  
A Husni ◽  
M Kosmiatin

Abstract Polyploidy induction could increase shallot bulb-size to raise consumer preference and local shallot productivity. The research aimed to obtain an effective method of polyploidy induction on callus of onion (Allium cepa) var. Bima Brebes. The experiment was consisted of two experimental steps, which were callus induction of onion and polyploid induction of the callus. A 1×1 cm callus was treated by two drops of oryzalin with concentrations 0, 25, 50, 75, 100, and 120 μM. The ploidy level was identified based on morphological trait, stomatal analysis and DNA content using a flow cytometry. The results showed callus diameter, number of green spots, and number of shoots were decreased with increasing oryzalin concentration. The planlet leaves regenerated from oryzalin treated callus were darker than that of control. The flow cytometry analysis showed that planlets with 75 μM oryzalin was tetraploid, had longer and wider stomata than that of the control.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sung Min Choi ◽  
Hi Jung Park ◽  
Eun A. Choi ◽  
Kyeong Cheon Jung ◽  
Jae Il Lee

AbstractCirculating CD4+CD8+ double-positive (DP) T cells are associated with a variety of disease states. However, unlike conventional T cells, the composition of this population is poorly understood. Here, we used single-cell RNA sequencing (scRNA-seq) to analyze the composition and characteristics of the DP T cell population circulating in the peripheral blood of cynomolgus monkeys. We found that circulating DP T cells not only contain a large number of naïve cells, but also comprise a heterogeneous population (CD4 CTL-, Eomes+ Tr1-, Th2-, Th17-, Tfh-, Treg-, CD8 CTL-, and innate-like cells) with multiple potential functions. Flow cytometry analysis revealed that a substantial number of the naïve DP T cells expressed CD8αβ, as well as CD8αα, along with high expression of CD31. Moreover, the CD4hiCD8lo and CD4hiCD8hi populations, which express high levels of the CD4 coreceptor, comprised subsets characterized by helper and regulatory functions, some of which also exhibited cytotoxic functions. By contrast, the CD4loCD8hi population with high CD8 coreceptor expression comprised a subset characterized by CD8 CTL- and innate-like properties. Taken together, the data show that scRNA-seq analysis identified a more diverse subset of the circulating DP cells than is currently known, despite this population being very small.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Yaowen Wang ◽  
Jingfang Zhang ◽  
Feipeng Wang ◽  
Wenping Chen ◽  
Jie Ma ◽  
...  

Background. Previous studies have shown that alkannin has anticancer, anti-inflammatory, and antibacterial effects. However, the effect of alkannin in the development of ovarian cancer (OC) remains unknown. Therefore, this study aims to elucidate the function of alkannin in OC progression. Methods. RT-qPCR and western blot analysis were used to measure mRNA and protein expression. Cell viability and metastasis were detected by the CCK-8 assay, flow cytometry analysis, and transwell assay. Results. Alkannin had no cytotoxicity toward normal ovarian cells, but alkannin can inhibit cell proliferation and induce apoptosis in OC cells. In addition, alkannin inhibited cell migration and invasion and blocked EMT in OC. Besides, upregulation of miR-4461 was found in OC tissues and cells, which was regulated by alkannin. More importantly, miR-4461 can inverse the effects of alkannin on cell viability and metastasis in OC cells. Conclusion. Alkannin restrains cell viability, metastasis, and EMT in OC by downregulating miR-4461 expression.


Sign in / Sign up

Export Citation Format

Share Document