Mechanisms of O2 Sensing in the Carotid Body in Comparison With Other O2-Sensing Cells

Physiology ◽  
1995 ◽  
Vol 10 (5) ◽  
pp. 211-216 ◽  
Author(s):  
H Acker ◽  
D Xue

An NAD(P)H oxidase-generating H2O2 dependent on PO2 is proposed as an O2 sensor protein in type I cells of the carotid body, regulating potassium channel open probability as well as tyrosine hydroxylase gene expression. The proposed signal cascade also is important in other O2-sensing cells.

2002 ◽  
Vol 282 (1) ◽  
pp. C27-C33 ◽  
Author(s):  
L. He ◽  
J. Chen ◽  
B. Dinger ◽  
K. Sanders ◽  
K. Sundar ◽  
...  

Various heme-containing proteins have been proposed as primary molecular O2 sensors for hypoxia-sensitive type I cells in the mammalian carotid body. One set of data in particular supports the involvement of a cytochrome b NADPH oxidase that is commonly found in neutrophils. Subunits of this enzyme have been immunocytochemically localized in type I cells, and diphenyleneiodonium, an inhibitor of the oxidase, increases carotid body chemoreceptor activity. The present study evaluated immunocytochemical and functional properties of carotid bodies from normal mice and from mice with a disrupted gp91 phagocytic oxidase (gp91 phox ) DNA sequence gene knockout (KO), a gene that codes for a subunit of the neutrophilic form of NADPH oxidase. Immunostaining for tyrosine hydroxylase, a signature marker antigen for type I cells, was found in groups or lobules of cells displaying morphological features typical of the O2-sensitive cells in other species, and the incidence of tyrosine hydroxylase-immunopositive cells was similar in carotid bodies from both strains of mice. Studies of whole cell K+currents also revealed identical current-voltage relationships and current depression by hypoxia in type I cells dissociated from normal vs. KO animals. Likewise, hypoxia-evoked increases in intracellular Ca2+ concentration were not significantly different for normal and KO type I cells. The whole organ response to hypoxia was evaluated in recordings of carotid sinus nerve activity in vitro. In these experiments, responses elicited by hypoxia and by the classic chemoreceptor stimulant nicotine were also indistinguishable in normal vs. KO preparations. Our data demonstrate that carotid body function remains intact after sequence disruption of the gp91 phox gene. These findings are not in accord with the hypothesis that the phagocytic form of NADPH oxidase acts as a primary O2 sensor in arterial chemoreception.


2021 ◽  
Vol 22 (15) ◽  
pp. 8222
Author(s):  
Dmitry Otlyga ◽  
Ekaterina Tsvetkova ◽  
Olga Junemann ◽  
Sergey Saveliev

The evolutionary and ontogenetic development of the carotid body is still understudied. Research aimed at studying the comparative morphology of the organ at different periods in the individual development of various animal species should play a crucial role in understanding the physiology of the carotid body. However, despite more than two centuries of study, the human carotid body remains poorly understood. There are many knowledge gaps in particular related to the antenatal development of this structure. The aim of our work is to study the morphological and immunohistochemical characteristics of the human carotid body in the antenatal and postnatal periods of development. We investigated the human carotid bodies from 1 embryo, 20 fetuses and 13 adults of different ages using samples obtained at autopsy. Immunohistochemistry revealed expression of βIII-tubulin and tyrosine hydroxylase in the type I cells and nerve fibers at all periods of ontogenesis; synaptophysin and PGP9.5 in the type I cells in some of the antenatal cases and all of the postnatal cases; 200 kDa neurofilaments in nerve fibers in some of the antenatal cases and all of the postnatal cases; and GFAP and S100 in the type II cells and Schwann cells in some of the antenatal cases and all of the postnatal cases. A high level of tyrosine hydroxylase in the type I cells was a distinctive feature of the antenatal carotid bodies. On the contrary, in the type I cells of adults, the expression of tyrosine hydroxylase was significantly lower. Our data suggest that the human carotid body may perform an endocrine function in the antenatal period, while in the postnatal period of development, it loses this function and becomes a chemosensory organ.


F1000Research ◽  
2018 ◽  
Vol 7 ◽  
pp. 1900 ◽  
Author(s):  
Nanduri R. Prabhakar ◽  
Ying-Jie Peng ◽  
Jayasri Nanduri

Hypoxia resulting from reduced oxygen (O2) levels in the arterial blood is sensed by the carotid body (CB) and triggers reflex stimulation of breathing and blood pressure to maintain homeostasis. Studies in the past five years provided novel insights into the roles of heme oxygenase-2 (HO-2), a carbon monoxide (CO)-producing enzyme, and NADH dehydrogenase Fe-S protein 2, a subunit of the mitochondrial complex I, in hypoxic sensing by the CB. HO-2 is expressed in type I cells, the primary O2-sensing cells of the CB, and binds to O2 with low affinity. O2-dependent CO production from HO-2 mediates hypoxic response of the CB by regulating H2S generation. Mice lacking NDUFS2 show that complex I-generated reactive oxygen species acting on K+ channels confer type I cell response to hypoxia. Whether these signaling pathways operate synergistically or independently remains to be studied.


1995 ◽  
Vol 78 (5) ◽  
pp. 1904-1909 ◽  
Author(s):  
W. Kummer ◽  
H. Acker

We demonstrate, by means of immunohistochemistry, that type I cells of human, guinea pig, and rat carotid bodies react with antisera raised against the subunits p22phox, gp91phox, p47phox, and p67phox of the NAD(P)H oxidase isolated from human neutrophil granulocytes. The findings support previous photometric studies that indicate that carotid body type I cells possess a putative oxygen sensor protein that is similar to the neutrophil NAD(P)H oxidase and consists of a hydrogen peroxide generating low-potential cytochrome b558 with cofactors regulating the electron transfer to oxygen.


Sign in / Sign up

Export Citation Format

Share Document