Iron Oxide Determination by X-Ray Fluorescence for In-Process Control of Solid Propellant and Premixes

1962 ◽  
Vol 6 ◽  
pp. 422-428
Author(s):  
Reuel E. Lamborn ◽  
Foster J. Sorenson

AbstractFinely divided iron oxide is used as a burning-rate catalyst in several solid rocket propellants. The concentration is critical and must be accurately determined as a quality control point before the propeltant is cast in the motor case and cured, in addition to the iron oxide, the propellant used for ignition of the Air Force Minuteman first stage contains a polymeric binder system, a solid oxidizer, and a metal powder. This composition makes it difficult to determine accurately the iron content by wet methods in the time available daring the propellant processing cycle. The use of X-ray fluorescence has been investigated as a means of satisfying the analysis time requirements while meeting the prescribed accuracy of ±1% of the amount of iron oxide present. Procedures for preparing test specimens have been developed and instrument operation conditions chosen which yield satisfactory precision. When ten specimens from each of three premixes were analyzed for iron content, the observed within-mix mean relative standard deviation was 0.28%; for propellant analyzed under the same conditions, the mean relative standard deviation was 0.35%. Factors affecting mix-to-mix accuracy, such as particle size and shape and interelement absorption and enhancement effects, have been investigated. Accuracy is adequate for in-process control of the iron oxide level in the premix, but further work is required before satisfactory control of propellant is achieved.

1990 ◽  
Vol 73 (3) ◽  
pp. 385-388
Author(s):  
Constantine A Georgiades

Abstract A sensitive, specific, automated energy dispersive X-ray fluorescence (EDXRF) method for determination of anhydrous dihydroxyaluminum sodium carbonate in antacid tablets has been developed. The compound was quantltated by Impact grinding, palletizing at 10 tons pressure, and monitoring the aluminum by using a rhodium anode X-ray tube, high resolution thermoelectrlcally cooled SI(LI) detector with sample spinning, and computer data processing. The assay procedure was validated with spiked laboratory-prepared samples at 100 ± 20% levels. The average recovery was 100.6% with a relative standard deviation of 1.6% (n = 14). Instrument precision was determined and found to have an average relative standard deviation of 1.0% (n = 16). In addition, analysis precision by the EDXRF method was compared to that for titration and autoanalyzer methodologies and found to be statistically comparable. The sample precision had an averaged relative standard deviation of 2.7% (n = 16) by X-ray methodology. The advantages of this EDXRF method Include Increased sample throughput with excellent precision and accuracy, no solvent usage, and automated data handling.


Author(s):  
P.F. Collins ◽  
W.W. Lawrence ◽  
J.F. Williams

AbstractA procedure for the automated determination of ammonia in tobacco has been developed. Ammonia is extracted from the ground tobacco sample with water and is determined with a Technicon Auto Analyser system which employs separation of the ammonia through volatilization followed by colourimetry using the phenate-hypochlorite reaction. The procedure has been applied to a variety of tobaccos containing from 0.02 to 0.5 % ammonia with an overall relative standard deviation of 2 %. The accuracy of the procedure as judged by recovery tests and by comparison to a manual distillation method is considered adequate


2020 ◽  
Author(s):  
Saneyuki Ohno ◽  
Tim Bernges ◽  
Johannes Buchheim ◽  
Marc Duchardt ◽  
Anna-Katharina Hatz ◽  
...  

<p>Owing to highly conductive solid ionic conductors, all-solid-state batteries attract significant attention as promising next-generation energy storage devices. A lot of research is invested in the search and optimization of solid electrolytes with higher ionic conductivity. However, a systematic study of an <i>interlaboratory reproducibility</i> of measured ionic conductivities and activation energies is missing, making the comparison of absolute values in literature challenging. In this study, we perform an uncertainty evaluation via a Round Robin approach using different Li-argyrodites exhibiting orders of magnitude different ionic conductivities as reference materials. Identical samples are distributed to different research laboratories and the conductivities and activation barriers are measured by impedance spectroscopy. The results show large ranges of up to 4.5 mScm<sup>-1</sup> in the measured total ionic conductivity (1.3 – 5.8 mScm<sup>-1</sup> for the highest conducting sample, relative standard deviation 35 – 50% across all samples) and up to 128 meV for the activation barriers (198 – 326 meV, relative standard deviation 5 – 15%, across all samples), presenting the necessity of a more rigorous methodology including further collaborations within the community and multiplicate measurements.</p>


1998 ◽  
Vol 81 (4) ◽  
pp. 763-774 ◽  
Author(s):  
Joanna M Lynch ◽  
David M Barbano ◽  
J Richard Fleming

Abstract The classic method for determination of milk casein is based on precipitation of casein at pH 4.6. Precipitated milk casein is removed by filtration and the nitrogen content of either the precipitate (direct casein method) or filtrate (noncasein nitrogen; NCN) is determined by Kjeldahl analysis. For the indirect casein method, milk total nitrogen (TN; Method 991.20) is also determined and casein is calculated as TN minus NCN. Ten laboratories tested 9 pairs of blind duplicate raw milk materials with a casein range of 2.42- 3.05℅ by both the direct and indirect casein methods. Statistical performance expressed in protein equivalents (nitrogen ⨯ 6.38) with invalid and outlier data removed was as follows: NCN method (wt%), mean = 0.762, sr = 0.010, SR = 0.016, repeatability relative standard deviation (RSDr) = 1.287℅, reproducibility relative standard deviation (RSDR) = 2.146%; indirect casein method (wt℅), mean = 2.585, repeatability = 0.015, reproducibility = 0.022, RSDr = 0.560℅, RSDR = 0.841; direct casein method (wt℅), mean = 2.575, sr = 0.015, sR = 0.025, RSDr = 0.597℅, RSDR = 0.988℅. Method performance was acceptable and comparable to similar Kjeldahl methods for determining nitrogen content of milk (Methods 991.20, 991.21,991.22, 991.23). The direct casein, indirect casein, and noncasein nitrogen methods have been adopted by AOAC INTERNATIONAL.


1988 ◽  
Vol 10 (2) ◽  
pp. 95-100
Author(s):  
John D. Stong

A laboratory computer controlled potentiometric titrator interfaced to a diode array spectrophotometer is described. The titrator consists of widely used, commercially available components; therefore, major attention is given to modes of interconnection and software implementation in data format and system control. Replicate potentiometric titrations of glycines gave a relative standard deviation in titre of 1.035% and a relative standard deviation in pH of 0.745%. Replicate spectrophotometric titrations of bromophenol blue were analysed at three wavelengths to yield pKa= 3.898 ± 0.075 (1.9% rsd).Methods of data presentation and manipulation are presented.


2013 ◽  
Vol 448-453 ◽  
pp. 406-408
Author(s):  
Jing Liu ◽  
Xiao Na Ji ◽  
Qing Kai Ren ◽  
Sheng Shu Ai ◽  
Li Jun Wan ◽  
...  

We established a method fordetermination of nitrate in water by High Performance Liquid Chromatography(HPLC). The sample was analysed by HPLC-ADA and was quantitated by externalstandard method after being simply processed. This methd has the advantages ofhigh separation efficiency and fast analysis. The experiment result showed thatthe linearly dependent coefficient was0.994, the recovery rate was between 98.7%~105.7%,the relative standard deviation(RSD)wasless than 2.1 %, and the lowest detectable limit is 0.01ng (S/N=1.6).


2005 ◽  
Vol 88 (5) ◽  
pp. 1404-1412 ◽  
Author(s):  
Sarah Hasnip ◽  
Colin Crews ◽  
Nicholas Potter ◽  
Paul Brereton ◽  
Henri Diserens ◽  
...  

Abstract An interlaboratory study was performed to evaluate the effectiveness of a headspace gas chromatography (GC) method for the determination of 1,3-dichloro-propan-2-ol (1,3-DCP) in soy sauce and related products at levels above 5 ng/g. The test portion is mixed with an internal standard (d5-1,3-DCP) and ammonium sulfate in a sealed headspace vial. After achieving equilibrium, the headspace is sampled either by gas-tight syringe or solid-phase microextraction (SPME) and analyzed by GC with mass spectrometric detection. 1,3-DCP is detected in the selected-ion mode (monitoring m/z 79 and 81 for 1,3-DCP and m/z 82 for the deuterated internal standard) and quantified by measurement against standards. Test materials comprising soy, dark soy, mushroom soy, and teriyaki sauces, both spiked and naturally contaminated, were sent to 9 laboratories in Europe, Japan, and the United States; of these, 5 used SPME and 4 used syringe headspace analysis. Test portions were spiked at 5.0, 10.0, 20.0, 100.0, and 500.0 ng/g. The average recovery for spiked blank samples was 108% (ranging from 96–130%). Based on results for spiked samples (blind pairs at 5, 10, 20, 100, and 500 ng/g) as well as a naturally contaminated sample (split-level pair at 27 and 29 ng/g), the relative standard deviation for repeatability (RSDr) ranged from 2.9–23.2%. The relative standard deviation for reproducibility (RSDR) ranged from 20.9–35.3%, and HorRat values of between 1.0 and 1.6 were obtained.


Sign in / Sign up

Export Citation Format

Share Document