scholarly journals Quantitative Analysis of the Efficiency of Clonal Deletion in the Thymus

1994 ◽  
Vol 4 (1) ◽  
pp. 43-53 ◽  
Author(s):  
Lisa M. Spain ◽  
Leslie J. Berg

One of the major mechanisms for establishing self-tolerance is the clonal deletion of self-reactive T cells during their development in the thymus. Using a TCR transgenic mouse model, we have established a quantitativeex vivoassay for examining the sensitivity and specificity of negative selection. Thymic organ cultures established from mice of varying MHC haplotypes were incubated with antigen, and the efficiency of clonal deletion assessed. We show here that clonal deletion of CD4+8+thymocytes is sensitive to both the gene dosage and the allelic variation of MHC class II molecules expressed on thymic antigen-presenting cells. We also find that when epithelial cells in the thymic cortex are the only antigen-presenting cells expressing the appropriate MHC class II molecules, negative selection of CD4+8+cells is as efficient as when antigen is presented on all thymic antigen-presenting cells. These studies demonstrate that the induction of self-tolerance via clonal deletion in the thymus is a function not only of antigen concentration, but also of MHC class II cell-surface density. In addition, together with the reports of others, these results confirm that cortical epithelial cells can mediate negative selection, and demonstrate that they do so in the intact thymic microenvironment.

Endocytosis ◽  
1992 ◽  
pp. 341-342
Author(s):  
J. Davoust ◽  
P. Cosson ◽  
J. M. Escola ◽  
J. Henry ◽  
M. Humbert ◽  
...  

2013 ◽  
Vol 210 (2) ◽  
pp. 287-300 ◽  
Author(s):  
Martin Aichinger ◽  
Chunyan Wu ◽  
Jelena Nedjic ◽  
Ludger Klein

Macroautophagy serves cellular housekeeping and metabolic functions through delivery of cytoplasmic constituents for lysosomal degradation. In addition, it may mediate the unconventional presentation of intracellular antigens to CD4+ T cells; however, the physiological relevance of this endogenous MHC class II loading pathway remains poorly defined. Here, we characterize the role of macroautophagy in thymic epithelial cells (TECs) for negative selection. Direct presentation for clonal deletion of MHC class II–restricted thymocytes required macroautophagy for a mitochondrial version of a neo-antigen, but was autophagy-independent for a membrane-bound form. A model antigen specifically expressed in Aire+ medullary TECs (mTECs) induced efficient deletion via direct presentation when targeted to autophagosomes, whereas interference with autophagosomal routing of this antigen through exchange of a single amino acid or ablation of an essential autophagy gene abolished direct presentation for negative selection. Furthermore, when this autophagy substrate was expressed by mTECs in high amounts, endogenous presentation and indirect presentation by DCs operated in a redundant manner, whereas macroautophagy-dependent endogenous loading was essential for clonal deletion at limiting antigen doses. Our findings suggest that macroautophagy supports central CD4+ T cell tolerance through facilitating the direct presentation of endogenous self-antigens by mTECs.


Sign in / Sign up

Export Citation Format

Share Document