scholarly journals Data-Parallel Numerical Weather Forecasting

1995 ◽  
Vol 4 (3) ◽  
pp. 141-153 ◽  
Author(s):  
Lex Wolters ◽  
Gerard Cats ◽  
Nils Gustafsson

In this article we describe the implementation of a numerical weather forecast model on a massively parallel computer system. This model is a production code used for routine weather forecasting at the meteorological institutes of several European countries. The modifications needed to achieve a data-parallel version of this model without explicit message passing are outlined. The achieved performance of different numerical solution methods within this model is presented and compared.

2020 ◽  
Author(s):  
Yuwen Chen ◽  
Xiaomeng Huang

<p>Statistical approaches have been used for decades to augment and interpret numerical weather forecasts. The emergence of artificial intelligence algorithms has provided new perspectives in this field, but the extension of algorithms developed for station networks with rich historical records to include newly-built stations remains a challenge. To address this, we design a framework that combines two machine learning methods: temperature prediction based on ensemble of multiple machine learning models and transfer learning for newly-built stations. We then evaluate this framework by post-processing temperature forecasts provided by a leading weather forecast center and observations from 301 weather stations in China. Station clustering reduces forecast errors by 24.4% averagely, while transfer learning improves predictions by 13.4% for recently-built sites with only one year of data available. This work demonstrates how ensemble learning and transfer learning can be used to supplement weather forecasting.</p><p></p>


Author(s):  
Naveen Lingaraju ◽  
Hosaagrahara Savalegowda Mohan

Weather forecast is significantly imperative in today’s smart technological world. A precise forecast model entails a plentiful data in order to attain the most accurate predictions. However, a forecast of future rainfall from historical data samples has always been challenging and key area of research. Hence, in modern weather forecasting a combo of computer models, observation, and knowledge of trends and patterns are introduced. This research work has presented a fitness function based adaptive artificial neural network scheme in order to forecast rainfall and temperature for upcoming decade (2021-2030) using historical weather data of 20 different districts of Karnataka state. Furthermore, effects of these forecasted weather parameters are realized over five major crops of Karnataka namely rice, wheat, jowar, maize, and ragi with the intention of evaluation for efficient crop management in terms of the passing relevant messages to the farmers and alternate measures such as suggesting other geographical locations to grow the same crop or growing other suitable crops at same geographical location. A graphical user interface (GUI) application has been developed for the proposed work in order to ease out the flow of work.


2020 ◽  
Vol 17 (4) ◽  
pp. 15-31
Author(s):  
Lavanya K. ◽  
Sathyan Venkatanarayanan ◽  
Anay Anand Bhoraskar

Weather forecasting is one of the biggest challenges that modern science is still contending with. The advent of high-power computing, technical advancement of data storage devices, and incumbent reduction in the storage cost have accelerated data collection to turmoil. In this background, many artificial intelligence techniques have been developed and opened interesting window of opportunity in hitherto difficult areas. India is on the cusp of a major technology overhaul with millions of people's data availability who were earlier unconnected with the internet. The country needs to fast forward the innovative use of available data. The proposed model endeavors to forecast temperature, precipitation, and other vital information for usability in the agrarian sector. This project intends to develop a robust weather forecast model that learns automatically from the daily feed of weather data that is input through a third-party API source. The weather feed is sourced from openweathermap, an online service that provides weather data, and is streamed into the forecast model through Kafka components. The LSTM neural network used by the forecast model is designed to continuously learn from predictions and perform actual analysis. The model can be architected to be implemented across very large applications having the capability to process large volumes of streamed or stored data.


Author(s):  
Saulo R. M. Barros ◽  
David Dent ◽  
Lars Isaksen ◽  
Guy Robinson ◽  
Fritz G. Wollenweber

1995 ◽  
Vol 19 (1-2) ◽  
pp. 159-171 ◽  
Author(s):  
Lex Wolters ◽  
Gerard Cats ◽  
Nils Gustafsson ◽  
Tomas Wilhelmsson

2013 ◽  
Vol 6 (2) ◽  
pp. 2935-2954 ◽  
Author(s):  
J. Güldner

Abstract. In the frame of the project "LuFo iPort VIS" which focuses on the implementation of a site specific visibility forecast, a field campaign was organised to offer detailed information to a numerical fog model. As part of additional observing activities a 22-channel microwave radiometer profiler (MWRP) was operating at the Munich Airport site in Germany from October 2011 to February 2012 in order to provide vertical temperature and humidity profiles as well as cloud liquid water information. Independently from the model-related aims of the campaign, the MWRP observations were used to study their capabilities to work in operational meteorological networks. Over the past decade a growing quantity of MWRP has been introduced and a user community (MWRnet) was established to encourage activities directed at the set up of an operational network. On that account, the comparability of observations from different network sites plays a fundamental role for any applications in climatology and numerical weather forecast. In practice, however, systematic temperature and humidity differences (bias) between MWRP retrievals and co-located radiosonde profiles were observed and reported by several authors. This bias can be caused by instrumental offsets as well as by the absorption model used in the retrieval algorithms. At the Lindenberg observatory besides a neural network provided by the manufacturer, a measurement-based regression method was developed to reduce the bias. These regression operators are calculated on the basis of coincident radiosonde observations and MWRP brightness temperature (TB) measurements. However, MWRP applications in a network require comparable results at just any site, even if no radiosondes are available. The motivation of this work is directed to a verification of the suitability of the operational local forecast model COSMO-EU of the Deutscher Wetterdienst (DWD) for the calculation of model-based regression operators in order to provide unbiased vertical profiles during the campaign at Munich Airport. The results of this algorithm and the retrievals of a neural network, specially developed for the site, are compared with radiosondes from Oberschleißheim located about 10 km apart from the MWRP site. The bias of the retrievals could be considerably reduced and the accuracy, which has been assessed for the airport site, is quite similar to those of the operational radiometer site at Lindenberg above 1 km height. Additional investigations are made to determine the length of the training period necessary for generating best estimates. Thereby three months have proven to be adequate. The results of the study show that on the basis of numerical weather prediction (NWP) model data, available everywhere at any time, the model-based regression method is capable to provide comparable results at a multitude of sites. Furthermore, the approach offers auspicious conditions for automation and continuous updating.


Sign in / Sign up

Export Citation Format

Share Document