scholarly journals Neurosurgery for Chronic Neuropathic Pain

2000 ◽  
Vol 5 (1) ◽  
pp. 101-106
Author(s):  
Jung Y Park ◽  
Andres M Lozano

Neurosurgery can play a role in the management of patients with refractory chronic neuropathic pain. However, selecting patients as candidates for surgery and choosing the most appropriate surgical procedure is challenging, and surgical interventions often have limited efficacy. When considering surgery, neuroaugmentative or neuromodulative procedures (eg, peripheral, spinal, motor cortex or deep brain stimulation) are generally preferred over ablative procedures as initial modalities. With better understanding of specific pain mechanisms, surgery will have more to offer patients with chronic neuropathic pain.

2010 ◽  
Vol 2;13 (1;2) ◽  
pp. 157-165
Author(s):  
Timothy R. Deer

Intracranial neurostimulation for pain relief is most frequently delivered by stimulating the motor cortex, the sensory thalamus, or the periaqueductal and periventricular gray matter. The stimulation of these sites through MCS (motor cortex stimulation) and DBS (deep brain stimulation) has proven effective for treating a number of neuropathic and nociceptive pain states that are not responsive or amenable to other therapies or types of neurostimulation. Prospective randomized clinical trials to confirm the efficacy of these intracranial therapies have not been published. Intracranial neurostimulation is somewhat different than other forms of neurostimulation in that its current primary application is for the treatment of medically intractable movement disorders. However, the increasing use of intracranial neurostimulation for the treatment of chronic pain, especially for pain not responsive to other neuromodulation techniques, reflects the efficacy and relative safety of these intracranial procedures. First employed in 1954, intracranial neurostimulation represents one of the earliest uses of neurostimulation to treat chronic pain that is refractory to medical therapy. Currently, 2 kinds of intracranial neurostimulation are commonly used to control pain: motor cortex stimulation and deep brain stimulation. MCS has shown particular promise in the treatment of trigeminal neuropathic pain and central pain syndromes such as thalamic pain syndrome. DBS may be employed for a number of nociceptive and neuropathic pain states, including cluster headaches, chronic low back pain, failed back surgery syndrome, peripheral neuropathic pain, facial deafferentation pain, and pain that is secondary to brachial plexus avulsion. The unique lack of stimulation-induced perceptual experience with MCS makes MCS uniquely suited for blinded studies of its effectiveness. This article will review the scientific rationale, indications, surgical techniques, and outcomes of intracranial neuromodulation procedures for the treatment of chronic pain. Key words: Motor cortex stimulation, deep brain stimulation, pain, neurostimulation


2015 ◽  
Vol 38 (6) ◽  
pp. E11 ◽  
Author(s):  
Jennifer F. Russo ◽  
Sameer A. Sheth

Chronic neuropathic pain is estimated to affect 3%-4.5% of the worldwide population. It is associated with significant loss of productive time, withdrawal from the workforce, development of mood disorders such as depression and anxiety, and disruption of family and social life. Current medical therapeutics often fail to adequately treat chronic neuropathic pain. Deep brain stimulation (DBS) targeting subcortical structures such as the periaqueductal gray, the ventral posterior lateral and medial thalamic nuclei, and the internal capsule has been investigated for the relief of refractory neuropathic pain over the past 3 decades. Recent work has identified the dorsal anterior cingulate cortex (dACC) as a new potential neuromodulation target given its central role in cognitive and affective processing. In this review, the authors briefly discuss the history of DBS for chronic neuropathic pain in the United States and present evidence supporting dACC DBS for this indication. They review existent literature on dACC DBS and summarize important findings from imaging and neurophysiological studies supporting a central role for the dACC in the processing of chronic neuropathic pain. The available neurophysiological and empirical clinical evidence suggests that dACC DBS is a viable therapeutic option for the treatment of chronic neuropathic pain and warrants further investigation.


Pain ◽  
2006 ◽  
Vol 125 (1) ◽  
pp. 188-196 ◽  
Author(s):  
Clement Hamani ◽  
Jason M. Schwalb ◽  
Ali R. Rezai ◽  
Jonathan O. Dostrovsky ◽  
Karen D. Davis ◽  
...  

2021 ◽  
Vol 146 ◽  
pp. 246-260
Author(s):  
Giovanna Zambo Galafassi ◽  
Pedro Henrique Simm Pires de Aguiar ◽  
Renata Faria Simm ◽  
Paulo Roberto Franceschini ◽  
Marco Prist Filho ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Igor Lavrov ◽  
Timur Latypov ◽  
Elvira Mukhametova ◽  
Brian Lundstrom ◽  
Paola Sandroni ◽  
...  

AbstractElectrical stimulation of the cerebral cortex (ESCC) has been used to treat intractable neuropathic pain for nearly two decades, however, no standardized approach for this technique has been developed. In order to optimize targeting and validate the effect of ESCC before placing the permanent grid, we introduced initial assessment with trial stimulation, using a temporary grid of subdural electrodes. In this retrospective study we evaluate the role of electrode location on cerebral cortex in control of neuropathic pain and the role of trial stimulation in target-optimization for ESCC. Location of the temporary grid electrodes and location of permanent electrodes were evaluated in correlation with the long-term efficacy of ESCC. The results of this study demonstrate that the long-term effect of subdural pre-motor cortex stimulation is at least the same or higher compare to effect of subdural motor or combined pre-motor and motor cortex stimulation. These results also demonstrate that the initial trial stimulation helps to optimize permanent electrode positions in relation to the optimal functional target that is critical in cases when brain shift is expected. Proposed methodology and novel results open a new direction for development of neuromodulation techniques to control chronic neuropathic pain.


Sign in / Sign up

Export Citation Format

Share Document