scholarly journals DNA Extraction from Bronchial Aspirates for Molecular Cytology: Which Method to Take?

2003 ◽  
Vol 25 (2) ◽  
pp. 83-88 ◽  
Author(s):  
Hans Jürgen Grote ◽  
Viola Schmiemann ◽  
Mario Sarbia ◽  
Alfred Böcking

Objective: To date, there are only few systematic reports on the quality of DNA extracted from routine diagnostic cytologic specimens. It was the aim of the present study to evaluate the ability of 50% ethanol/2% carbowax (Saccomanno fixative) to preserve bronchial secretions with high quality genomic DNA as well as to compare different DNA extraction methods.Methods: DNA was extracted from 45 bronchial aspirates by four different extraction protocols. Beside DNA yield, DNA quality with regard to purity, integrity, and PCR success rate were investigated.Results: No fragmentation of sample DNA due to the fixative was detected. It was preserved as high molecular weight DNA. DNA yield, purity, and integrity were dependent on the DNA extraction method to some extend. Irrespective of the DNA extraction method the PCR success rate for amplification of β‐globin gene fragments (268, 536, and 989 bp) was 100%. Conclusions: A fixative containing 50% ethanol/2% carbowax preserves high quality DNA which is well suited for PCR‐based assays regardless of the extraction protocol used. The selection of the DNA extraction protocol has to be adjusted to the circumstances of application.

2020 ◽  
Author(s):  
santiago vilanova ◽  
David Alonso ◽  
Pietro Gramazio ◽  
Mariola Plazas ◽  
Edgar Garcia Fortea ◽  
...  

Abstract Background The use of sequencing and genotyping platforms has undergone dramatic improvements, enabling the generation of a wealth of genomic information. Despite this progress, the availability of high-quality genomic DNA (gDNA) in sufficient concentrations is often a main limitation, especially for third-generation sequencing platforms. A variety of DNA extraction methods and commercial kits are available. However, many of these are costly and frequently give either low yield or low-quality DNA, inappropriate for next generation sequencing (NGS) platforms. Here, we describe a fast and inexpensive DNA extraction method (SILEX) applicable to a wide range of plant species and tissues. Results SILEX is a high-throughput DNA extraction protocol, based on the standard CTAB method with a DNA silica matrix recovery, which allows obtaining NGS-quality high molecular weight genomic plant DNA free of inhibitory compounds. SILEX was compared with a standard CTAB extraction protocol and a common commercial extraction kit in a variety of species, including recalcitrant ones, from different families. In comparison with the other methods, SILEX yielded DNA in higher concentrations and of higher quality. Manual extraction of 48 samples can be done in 96 min by one person at a cost of 0.12 €/sample of reagents and consumables. Hundreds of tomato gDNA samples obtained with either SILEX or the commercial kit were successfully genotyped with Single Primer Enrichment Technology (SPET) with the Illumina HiSeq 2500 platform. Furthermore, DNA extracted from Solanum elaeagnifolium using this protocol was assessed by Pulsed-field gel electrophoresis (PFGE), obtaining a suitable size ranges for most sequencing platforms that required high-molecular-weight DNA such as Nanopore or PacBio. Conclusions A high-throughput, fast and inexpensive DNA extraction protocol was developed and validated for a wide variety of plants and tissues. SILEX offers an easy, scalable, efficient and inexpensive way to extract DNA for various next-generation sequencing applications including SPET and Nanopore among others.


2020 ◽  
Vol 43 (1) ◽  
pp. 61-67
Author(s):  
Arita Sabriu-Haxhijaha ◽  
Gordana Ilievska ◽  
Velimir Stojkovski ◽  
Katerina Blagoevska

AbstractThe probability of contamination of non-transgenic varieties with genetically modified (GM) products increase as a result of global expansion of areas sown with transgenic crops. DNA-based methods as accurate, efficient and reliable methods are preferable for detection of GM material in raw or highly processed foods. Isolation of high quality DNA with a suitable and efficient DNA extraction protocol is crucial for getting precise results in DNA amplification. In this study, we performed modifications of previously known Sodium dodecyl sulfate (SDS)-based DNA extraction method regarding the incubation period, DNA pellet washing and addition of organic solvent extraction, to improve DNA quality and to reduce costs. Raw corn kernels and roasted soybean seed were used as samples. DNA was extracted following three protocols, modifications of Edwards protocol. The type of detergent used in raw corn sample did not cause significant effects on extracted DNA yield and purity, while in roasted soybean samples the 2% (w/v) SDS lysis buffer gave the highest DNA yield. The additional incubation step raised the DNA yield from raw corn for 121%, while the purest DNA from soybean sample was obtained using organic solvent extraction. Electrophoretic determination of DNA integrity showed varying degree of DNA smearing from roasted soybean. Contrary, all extraction protocols used on raw corn kernels produced a high molecular weight DNA. Thus, our in-house DNA extraction protocol is as efficient but more cost effective compared to commercial kits and can be used for raw corn, while the protocol for roasted soybean needs further improvement.


2018 ◽  
Vol 2 ◽  
Author(s):  
Markus Majaneva ◽  
Ola H. Diserud ◽  
Shannon H.C. Eagle ◽  
Mehrdad Hajibabaei ◽  
Torbjørn Ekrem

Characterisation of freshwater benthic biodiversity using DNA metabarcoding may allow more cost-effective environmental assessments than the current morphological-based assessment methods. DNA metabarcoding methods where sorting or pre-sorting of samples are avoided altogether are especially interesting, since the time between sampling and taxonomic identification is reduced. Due to the presence of non-target material like plants and sediments in crude samples, DNA extraction protocols become important for maximising DNA recovery and sample replicability. We sampled freshwater invertebrates from six river and lake sites and extracted DNA from homogenised bulk samples in quadruplicate subsamples, using a published method and two commercially available kits: HotSHOT approach, Qiagen DNeasy Blood & Tissue Kit and Qiagen DNeasy PowerPlant Pro Kit. The performance of the selected extraction methods was evaluated by measuring DNA yield and applying DNA metabarcoding to see if the choice of DNA extraction method affects DNA yield and metazoan diversity results. The PowerPlant Kit extractions resulted in the highest DNA yield and a strong significant correlation between sample weight and DNA yield, while the DNA yields of the Blood & Tissue Kit and HotSHOT method did not correlate with the sample weights. Metazoan diversity measures were more repeatable in samples extracted with the PowerPlant Kit compared to those extracted with the HotSHOT method or the Blood & Tissue Kit. Subsampling using Blood & Tissue Kit and HotSHOT extraction failed to describe the same community in the lake samples. Our study exemplifies that the choice of DNA extraction protocol influences the DNA yield as well as the subsequent community analysis. Based on our results, low specimen abundance samples will likely provide more stable results if specimens are sorted prior to DNA extraction and DNA metabarcoding, but the repeatability of the DNA extraction and DNA metabarcoding results was close to ideal in high specimen abundance samples.


2020 ◽  
Author(s):  
santiago vilanova ◽  
David Alonso ◽  
Pietro Gramazio ◽  
Mariola Plazas ◽  
Paola Ferrante ◽  
...  

Abstract Background: The use of sequencing and genotyping platforms has undergone dramatic improvements, enabling the generation of a wealth of genomic information. Despite this progress, the availability of high-quality genomic DNA (gDNA) in sufficient concentrations is often a main limitation, especially for third-generation sequencing platforms. A variety of DNA extraction methods and commercial kits are available. However, many of these are costly and frequently give either low yield or low-quality DNA, inappropriate for next generation sequencing (NGS) platforms. Here, we describe a fast and inexpensive DNA extraction method (SILEX) applicable to a wide range of plant species and tissues. Results: SILEX is a high-throughput DNA extraction protocol, based on the standard CTAB method with a DNA silica matrix recovery, which allows obtaining NGS-quality high molecular weight genomic plant DNA free of inhibitory compounds. SILEX was compared with a standard CTAB extraction protocol and a common commercial extraction kit in a variety of species, including recalcitrant ones, from different families. In comparison with the other methods, SILEX yielded DNA in higher concentrations and of higher quality. Manual extraction of 48 samples can be done in 96 min by one person at a cost of 0.12 €/sample of reagents and consumables. Hundreds of tomato gDNA samples obtained with either SILEX or the commercial kit were successfully genotyped with Single Primer Enrichment Technology (SPET) with the Illumina HiSeq 2500 platform. Furthermore, DNA extracted from Solanum elaeagnifolium using this protocol was assessed by Pulsed-field gel electrophoresis (PFGE), obtaining a suitable size ranges for most sequencing platforms that required high-molecular-weight DNA such as Nanopore or PacBio. Conclusions: A high-throughput, fast and inexpensive DNA extraction protocol was developed and validated for a wide variety of plants and tissues. SILEX offers an easy, scalable, efficient and inexpensive way to extract DNA for various next-generation sequencing applications including SPET and Nanopore among others.


2019 ◽  
Author(s):  
Sudeshna Chakraborty ◽  
Anwesha Saha ◽  
N.A. Aravind

AbstractIsolation of high molecular weight DNA from gastropod molluscs and its subsequent PCR amplification is considered difficult due to excessive mucopolysaccharides secretion which co-precipitate with DNA and obstruct successful amplification. In an attempt to address this issue, we describe a modified CTAB DNA extraction method that proved to work significantly better with a number of freshwater and terrestrial gastropod taxa. We compared the performance of this method with Qiagen® DNeasy Blood and Tissue Kit. Reproducibility of amplification was verified using a set of taxon-specific primers wherein, modified CTAB extracted DNA could be replicated at least four out of five times but kit extracted DNA could not be replicated. Additionally, sequence quality was significantly better with CTAB extracted DNA. This could be attributed to the removal of polyphenolic compounds by polyvinyl pyrrolidone (PVP) which is the only difference between conventional and modified CTAB DNA extraction methods for animals. The genomic DNA isolated using modified CTAB protocol was of high quality (A260/280 ≥ 1.80) and could be used for downstream reactions even after long term storage (more than two years).


2018 ◽  
Vol 24 (1) ◽  
Author(s):  
DIVYA SHARMA ◽  
DALIP KUMAR ◽  
RHITOBAN RAY CHOUDHURY

PCR-based markers have been widely used for the analysis of genetic diversity and to avoid ambiguity, molecular characterization is very effective tool for accurate discrimination and identification of a species in insects. Because these studies require analysis of large number of samples, a DNA extraction method that is fast, inexpensive and yields high quality DNA from the preserved samples, needs to be evaluated. A comparative analysis of four methods for DNA extraction from a single specimen of rice weevil, Sitophilus oryzae preserved in 90% alcohol has been communicated. Significantly higher DNA yields were obtained by using SDS-Potassium acetate method followed by CTAB, DNA XPress and Bioline Isolate II genomic DNA kit. Maximum purity (A260/A280- 1.8) was obtained with Bioline Isolate II genomic DNA kit method. The Absorbance ratio was appreciably low with DNA Xpress kit showing the presence of proteins. Bioline Isolate II genomic DNA kit was time efficient and yielded good quality DNA but at a high cost. Based on DNA yield and quality, these evaluations provide a guide for choosing Bioline Isolate II genomic DNA kit method of DNA extraction for rice weevils and optimizing the extraction conditions for rice weevils.


2020 ◽  
Vol 5 (2) ◽  
pp. 95 ◽  
Author(s):  
Rajashree Chowdhury ◽  
Prakash Ghosh ◽  
Md. Anik Ashfaq Khan ◽  
Faria Hossain ◽  
Khaledul Faisal ◽  
...  

To detect Post-kala-azar leishmaniasis (PKDL) cases, several molecular methods with promising diagnostic efficacy have been developed that involve complicated and expensive DNA extraction methods, thus limiting their application in resource-poor settings. As an alternative, we evaluated two rapid DNA extraction methods and determined their impact on the detection of the parasite DNA using our newly developed recombinase polymerase amplification (RPA) assay. Skin samples were collected from suspected PKDL cases following their diagnosis through national guidelines. The extracted DNA from three skin biopsy samples using three different extraction methods was subjected to RPA and qPCR. The qPCR and RPA assays exhibited highest sensitivities when reference DNA extraction method using Qiagen (Q) kit was followed. In contrast, the sensitivity of the RPA assay dropped to 76.7% and 63.3%, respectively, when the boil & spin (B&S) and SpeedXtract (SE) rapid extraction methods were performed. Despite this compromised sensitivity, the B&S-RPA technique yielded an excellent agreement with both Q-qPCR (k = 0.828) and Q-RPA (k = 0.831) techniques. As expected, the reference DNA extraction method was found to be superior in terms of diagnostic efficacy. Finally, to apply the rapid DNA extraction methods in resource-constrained settings, further methodological refinement is warranted to improve DNA yield and purity through rigorous experiments.


2019 ◽  
Vol 39 (2) ◽  
Author(s):  
Yimiao Xia ◽  
Fusheng Chen ◽  
Yan Du ◽  
Chen Liu ◽  
Guanhao Bu ◽  
...  

Abstract Soybean is the most important genetically modified (GM) oilseed worldwide. Regulations relating to the approval of biotech soybean varieties and product labeling demand accurate and reliable detection techniques to screen for GM soya. High-quality extracted DNA is essential for DNA-based monitoring methods. Thus, four widely used protocols (SDS, CTAB, DP305, and DNeasy Plant Mini Kit) were compared in the present study to explore the most efficient DNA extraction method for raw soya matrix. The SDS-based method showed the highest applicability. Then crucial factors influencing DNA yield and purity, such as SDS lysis buffer component concentrations and organic compounds used to isolate DNA, were further investigated to improve the DNA obtained from raw soybean seeds, which accounts for the innovation of this work. As a result, lysis buffer (2% SDS (w/v), 150 mM NaCl, 50 mM Tris/HCl, 50 mM EDTA, pH 8.0) and organic reagents including chloroform/isoamyl alcohol (24:1, v/v) (C: I), isopropanol, and ethanol corresponding to the extraction and first and second precipitation procedures, respectively, were used in the optimized SDS method. The optimized method was verified by extracting approximately 2020–2444 ng DNA/mg soybean with A260/280 ratios of 1.862–1.954 from five biotech and non-biotech soybean varieties. Only 0.5 mg of soya was required to obtain enough DNA for PCR amplification using the optimized SDS-based method. These results indicate that the screening protocol in the present study achieves the highest suitability and efficiency for DNA isolation from raw soya seed flour.


Sign in / Sign up

Export Citation Format

Share Document