scholarly journals Fuzzy Coordinated PI Controller: Application to the Real-Time Pressure Control Process

2008 ◽  
Vol 2008 ◽  
pp. 1-9 ◽  
Author(s):  
N. Kanagaraj ◽  
P. Sivashanmugam ◽  
S. Paramasivam

This paper presents the real-time implementation of a fuzzy coordinated classical PI control scheme for controlling the pressure in a pilot pressure tank system. The fuzzy system has been designed to track the variation parameters in a feedback loop and tune the classical controller to achieve a better control action for load disturbances and set point changes. The error and process inputs are chosen as the inputs of fuzzy system to tune the conventional PI controller according to the process condition. This online conventional controller tuning technique will reduce the human involvement in controller tuning and increase the operating range of the conventional controller. The proposed control algorithm is experimentally implemented for the real-time pressure control of a pilot air tank system and validated using a high-speed 32-bit ARM7 embedded microcontroller board (ATMEL AT91M55800A). To demonstrate the performance of the fuzzy coordinated PI control scheme, results are compared with a classical PI and PI-type fuzzy control method. It is observed that the proposed controller structure is able to quickly track the parameter variation and perform better in load disturbances and also for set point changes.

2016 ◽  
Vol 154 ◽  
pp. 71-79 ◽  
Author(s):  
Daniele Laucelli ◽  
Luigi Berardi ◽  
Rita Ugarelli ◽  
Antonietta Simone ◽  
Orazio Giustolisi

Author(s):  
Philip R. Page ◽  
Adnan M. Abu-Mahfouz ◽  
Olivier Piller ◽  
Matome L. Mothetha ◽  
Muhammad S. Osman

Author(s):  
M. Thirunavukkarasu ◽  
V. Lakshminarayanan

Tire blow-outs or puncture during the operation of the vehicle is one of the major root causes of road accidents. The drivers lose his/her control of the steering wheel when the tire get punctured or busted leading towards loss of stability of the vehicle causing adverse effects to the vehicle and the passenger. Due to the rapid change in the pressure range within the tyres, the rim of the wheels come in contact with the road surface causing loss of traction and stability of the vehicle leading to accidents. Despite, the rapid advancements witnessed in the field of automobile industry stating from autonomous vehicles to electronic stability unit, a proper solution addressing the issue of accidents caused due to tire blow-outs remains unanswered. In this proposed study, automatic activation of an additional secondary wheel/roller assembly mounted to the chassis using a custom made Zigbee based smart traction system in order to address the traction and stability issues based on the real-time pressure of the tyre is presented. The real-time pressure of the wheels is monitored by the control system which then decides on scheduling the activation of the secondary wheel/roller assembly using a battery operated pneumatic system which will prevent the vehicle from losing its stability. The proposed traction control system consisting of the secondary roller assembly could also be considered as a lifesaving add-on to the passenger vehicle and a replacement for the wheel replacement jack emphasising the market demand of the proposed solution which is a robust and a cost-effective solution.


Author(s):  
Mario L. Ferrari ◽  
Alessandro Sorce ◽  
Aristide F. Massardo

This paper shows the Hardware-In-the-Loop (HIL) technique developed for the complete emulation of Solid Oxide Fuel Cell (SOFC) based hybrid systems. This approach is based on the coupling of an emulator test rig with a real-time software for components which are not included in the plant. The experimental facility is composed of a T100 microturbine (100 kW electrical power size) modified for the connection to an SOFC emulator device. This component is composed of both anodic and cathodic vessels including also the anodic recirculation system which is carried out with a single stage ejector, driven by an air flow in the primary duct. However, no real stack material was installed in the plant. For this reason, a real-time dynamic software was developed in the Matlab-Simulink environment including all the SOFC system components (the fuel cell stack with the calculation of the electrochemical aspects considering also the real losses, the reformer, and a cathodic recirculation based on a blower, etc.). This tool was coupled with the real system utilizing a User Datagram Protocol (UDP) data exchange approach (the model receives flow data from the plant at the inlet duct of the cathodic vessel, while it is able to operate on the turbine changing its set-point of electrical load or turbine outlet temperature). So, the software is operated to control plant properties to generate the effect of a real SOFC in the rig. In stand-alone mode the turbine load is changed with the objective of matching the measured Turbine Outlet Temperature (TOT) value with the calculated one by the model. In grid-connected mode the software/hardware matching is obtained through a direct manipulation of the TOT set-point. This approach was essential to analyze the matching issues between the SOFC and the micro gas turbine devoting several tests on critical operations, such as start-up, shutdown and load changes. Special attention was focused on tests carried out to solve the control system issues for the entire real hybrid plant emulated with this HIL approach. Hence, the innovative control strategies were developed and successfully tested considering both the Proportional Integral Derivative and advanced approaches. Thanks to the experimental tests carried out with this HIL system, a comparison between different control strategies was performed including a statistic analysis on the results The positive performance obtainable with a Model Predictive Control based technique was shown and discussed. So, the HIL system presented in this paper was essential to perform the experimental tests successfully (for real hybrid system development) without the risks of destroying the stack in case of failures. Mainly surge (especially during transient operations, such as load changes) and other critical conditions (e.g. carbon deposition, high pressure difference between the fuel cell sides, high thermal gradients in the stack, excessive thermal stress in the SOFC system components, etc.) have to be carefully avoided in complete plants.


1996 ◽  
Vol 29 (7) ◽  
pp. 61-66
Author(s):  
R. Babuška ◽  
H.A.B. te Braake ◽  
A.J. Krijgsman ◽  
H.B. Verbruggen

Industries such as, textile, food processing, chemical and water treatment plants are part of our global development. The efficiency of processes used by them is always a matter of great importance. Efficiency can be greatly improved by obtaining an exact model of the process. This paper studies the two main classifications of model development – First-Principles Model and Empirical Model. First-Principles Model can be obtained with an understanding of the basic physics of the system. On the other hand, Empirical Models require only the input-output data and can thus factor in process non-linearity, disturbances and unexpected errors. This paper utilizes the System Identification Toolbox in MATLAB for empirical model development. Models are developed for a single tank system, a classic SISO problem and for the two interacting tank system. Both systems are studied with respect to three operating points, each from a local linear region. The obtained models are validated with the real-time setup. They are satisfactory in their closeness to the real time process and hence deemed fit for use in control algorithms and other process manipulations


2013 ◽  
Vol 27 (1) ◽  
pp. 215-225 ◽  
Author(s):  
Mohammad Reza Bazargan-Lari ◽  
Reza Kerachian ◽  
Hossein Afshar ◽  
Seyyed Nasser Bashi-Azghadi

Sign in / Sign up

Export Citation Format

Share Document