scholarly journals The Dyon Charge in Noncommutative Gauge Theories

2008 ◽  
Vol 2008 ◽  
pp. 1-4 ◽  
Author(s):  
L. Cieri ◽  
F. A. Schaposnik

We construct a dyon solution for the noncommutative version of the Yang-Mills-Higgs model with a ϑ-term. Extending the Noether method to the case of a noncommutative gauge theory, we analyze the effect of CP violation induced both by the ϑ-term and by noncommutativity proving that the Witten effect formula for the dyon charge remains the same as in ordinary space.

2004 ◽  
Vol 19 (04) ◽  
pp. 613-630 ◽  
Author(s):  
RABIN BANERJEE

We propose an exact expression for the unintegrated form of the star gauge-invariant axial anomaly in an arbitrary even dimensional noncommutative gauge theory. The proposal is based on our earlier work,7 as well as on the inverse Seiberg–Witten map and identities related to it, obtained previously15,18 by comparing Ramond–Ramond couplings in different descriptions. The integrated anomalies, found from the unintegrated ones, are expressed in terms of a simplified version of the Elliott formula involving the noncommutative Chern character. These anomalies, under the Seiberg–Witten transformation, reduce to the ordinary (integrated) axial anomalies. Compatibility with existing results of anomalies in noncommutative theories is established.


2002 ◽  
Vol 17 (01) ◽  
pp. 123-144 ◽  
Author(s):  
FARHAD ARDALAN ◽  
NÉDA SADOOGHI

Anomalies arising from nonplanar triangle diagrams of noncommutative gauge theory are studied. Local chiral gauge anomalies for both noncommutative U(1) and U(N) gauge theories with adjoint matter fields are shown to vanish. For noncommutative QED with fundamental matters, due to UV/IR mixing a finite anomaly emerges from the nonplanar contributions. It involves a generalized ⋆-product of gauge fields.


1976 ◽  
Vol 29 (6) ◽  
pp. 347 ◽  
Author(s):  
M Gell-Mann

A descriptive review is given of gauge theories of weak, electromagnetic and strong interactions. The strong interactions are interpreted in terms of an unbroken Yang-Mills gauge theory based on SU(3) colour symmetry of quarks and gluons. The confinement mechanism of quarks, gluons and other nonsinglets is discussed. The unification of the weak and electromagnetic interactions through a broken Yang-Mills gauge theory is described. In total the basic constituents are then the quarks, leptons and gauge bosons.


1999 ◽  
Vol 14 (21) ◽  
pp. 3421-3432 ◽  
Author(s):  
A. ASTE ◽  
G. SCHARF

We show for the case of interacting massless vector bosons, how the structure of Yang–Mills theories emerges automatically from a more fundamental concept, namely perturbative quantum gauge invariance. It turns out that the coupling in a non-Abelian gauge theory is necessarily of Yang–Mills type plus divergence- and coboundary-couplings. The extension of the method to massive gauge theories is briefly discussed.


2015 ◽  
Vol 30 (01) ◽  
pp. 1450197
Author(s):  
Badis Ydri

The phenomenon of emergent fuzzy geometry and noncommutative gauge theory from Yang–Mills matrix models is briefly reviewed. In particular, the eigenvalue distributions of Yang–Mills matrix models in lower dimensions in the commuting (matrix or Yang–Mills) phase of these models are discussed.


2007 ◽  
Vol 22 (26) ◽  
pp. 4717-4796 ◽  
Author(s):  
DIEGO RODRÍGUEZ-GÓMEZ

We review the holographic duals of gauge theories with eight supercharges obtained by adding very few flavors to pure supersymmetric Yang–Mills with 16 supercharges. Assuming a brane-probe limit, the gravity duals are engineered in terms of probe branes (the so-called flavor brane) in the background of the color branes. Both types of branes intersect on a given subspace in which the matter is confined. The gauge theory dual is thus the corresponding flavoring of the gauge theory with 16 supercharges. Those theories have in general a nontrivial phase structure; which is also captured in a beautiful way by the gravity dual. Along the lines of the gauge/gravity duality, we review also some of the results on the meson spectrum in the different phases of the theories.


2002 ◽  
Vol 17 (17) ◽  
pp. 2369-2376 ◽  
Author(s):  
A. IORIO ◽  
T. SÝKORA

We study the space–time symmetries and transformation properties of the non-commutative U(1) gauge theory, by using Noether charges. We carry out our analysis by keeping an open view on the possible ways θμν could transform. Since the theory is not invariant under the conformal transformations, with the only exception of space–time translations, we conclude that the most natural and dynamically consistent requirement is that θμν does not transform under any space–time transformation. A similar analysis should apply to other gauge groups.


1988 ◽  
Vol 03 (10) ◽  
pp. 2303-2313
Author(s):  
C. ABECASIS ◽  
A. FOUSSATS ◽  
O. ZANDRON

For the Poincare group manifold we prove that there are solutions for the pseudo-connection one-forms (Yang-Mills potentials) which are not diffeomorphically equivalent to those initially proposed by Ne’eman and Regge in their gauge theory of gravity and supergravity on a (super) group manifold. This is done by imposing the factorization conditions to the geometrical formulation of supersymmetric gauge theory.


2004 ◽  
Vol 01 (04) ◽  
pp. 493-544 ◽  
Author(s):  
STEPHEN C. ANCO

A basic problem of classical field theory, which has attracted growing attention over the past decade, is to find and classify all nonlinear deformations of linear abelian gauge theories. The physical interest in studying deformations is to address uniqueness of known nonlinear interactions of gauge fields and to look systematically for theoretical possibilities for new interactions. Mathematically, the study of deformations aims to understand the rigidity of the nonlinear structure of gauge field theories and to uncover new types of nonlinear geometrical structures. The first part of this paper summarizes and significantly elaborates a field-theoretic deformation method developed in earlier work. Some key contributions presented here are, firstly, that the determining equations for deformation terms are shown to have an elegant formulation using Lie derivatives in the jet space associated with the gauge field variables. Secondly, the obstructions (integrability conditions) that must be satisfied by lowest-order deformations terms for existence of a deformation to higher orders are explicitly identified. Most importantly, a universal geometrical structure common to a large class of nonlinear gauge theory examples is uncovered. This structure is derived geometrically from the deformed gauge symmetry and is characterized by a covariant derivative operator plus a nonlinear field strength, related through the curvature of the covariant derivative. The scope of these results encompasses Yang–Mills theory, Freedman–Townsend theory, and Einstein gravity theory, in addition to their many interesting types of novel generalizations that have been found in the past several years. The second part of the paper presents a new geometrical type of Yang–Mills generalization in three dimensions motivated from considering torsion in the context of nonlinear sigma models with Lie group targets (chiral theories). The generalization is derived by a deformation analysis of linear abelian Yang–Mills Chern–Simons gauge theory. Torsion is introduced geometrically through a duality with chiral models obtained from the chiral field form of self-dual (2+2) dimensional Yang–Mills theory under reduction to (2+1) dimensions. Field-theoretic and geometric features of the resulting nonlinear gauge theories with torsion are discussed.


Sign in / Sign up

Export Citation Format

Share Document