scholarly journals HOLOGRAPHIC FLAVOR IN THEORIES WITH EIGHT SUPERCHARGES

2007 ◽  
Vol 22 (26) ◽  
pp. 4717-4796 ◽  
Author(s):  
DIEGO RODRÍGUEZ-GÓMEZ

We review the holographic duals of gauge theories with eight supercharges obtained by adding very few flavors to pure supersymmetric Yang–Mills with 16 supercharges. Assuming a brane-probe limit, the gravity duals are engineered in terms of probe branes (the so-called flavor brane) in the background of the color branes. Both types of branes intersect on a given subspace in which the matter is confined. The gauge theory dual is thus the corresponding flavoring of the gauge theory with 16 supercharges. Those theories have in general a nontrivial phase structure; which is also captured in a beautiful way by the gravity dual. Along the lines of the gauge/gravity duality, we review also some of the results on the meson spectrum in the different phases of the theories.

2017 ◽  
Vol 32 (36) ◽  
pp. 1747018 ◽  
Author(s):  
Daisuke Kadoh

The duality conjecture states that [Formula: see text]-dimensional maximally supersymmetric Yang–Mills theory at finite temperature is expected to be dual to the non extremal black [Formula: see text]-brane at large N. We perform the lattice simulations of SYM for [Formula: see text] to investigate the validity of the conjecture. We show that the conjecture is qualitatively valid by comparing lattice results of the black [Formula: see text]-branes mass with analytic expectations in the gravity side.


2015 ◽  
Vol 30 (27) ◽  
pp. 1530054 ◽  
Author(s):  
Anosh Joseph

We review the status of recent investigations on validating the gauge-gravity duality conjecture through numerical simulations of strongly coupled maximally supersymmetric thermal gauge theories. In the simplest setting, the gauge-gravity duality connects systems of D0-branes and black hole geometries at finite temperature to maximally supersymmetric gauged quantum mechanics at the same temperature. Recent simulations show that nonperturbative gauge theory results give excellent agreement with the quantum gravity predictions, thus proving strong evidence for the validity of the duality conjecture and more insight into quantum black holes and gravity.


2010 ◽  
Vol 2010 ◽  
pp. 1-141 ◽  
Author(s):  
Felix Rust

We use the gauge/gravity duality to investigate various properties of strongly coupled gauge theories, which we interpret as models for the quark-gluon plasma (QGP). In particular, we use variants of the D3/D7 setup as an implementation of the top-down approach of connecting string theory with phenomenologically relevant gauge theories. We focus on the effects of finite temperature and finite density on fundamental matter in the holographic quark-gluon plasma, which we model as theN=2hypermultiplet in addition to theN=4gauge multiplet of supersymmetric Yang-Mills theory. We use a setup in which we can describe the holographic plasma at finite temperature and either baryon or isospin density and investigate the properties of the system from three different viewpoints. (i) We study meson spectra. Our observations at finite temperature and particle density are in qualitative agreement with phenomenological models and experimental observations. They agree with previous publications in the according limits. (ii) We study the temperature and density dependence of transport properties of fundamental matter in the QGP. In particular, we obtain diffusion coefficients. Furthermore, in a kinetic model we estimate the effects of the coupling strength on meson diffusion and therewith equilibration processes in the QGP. (iii) We observe the effects of finite temperature and density on the phase structure of fundamental matter in the holographic QGP. We trace out the phase transition lines of different phases in the phase diagram.


2020 ◽  
Vol 2020 (2) ◽  
Author(s):  
Yasuhiro Sekino

Abstract Gauge/gravity correspondence is regarded as a powerful tool for the study of strongly coupled quantum systems, but its proof is not available. An unresolved issue that should be closely related to the proof is what kind of correspondence exists, if any, when gauge theory is weakly coupled. We report progress about this limit for the case associated with D$p$-branes ($0\le p\le 4$), namely, the duality between the $(p+1)$D maximally supersymmetric Yang–Mills theory and superstring theory on the near-horizon limit of the D$p$-brane solution. It has been suggested by supergravity analysis that the two-point functions of certain operators in gauge theory obey a power law with the power different from the free-field value for $p\neq 3$. In this work, we show for the first time that the free-field result can be reproduced by superstring theory on the strongly curved background. The operator that we consider is of the form ${\rm Tr}(Z^J)$, where $Z$ is a complex combination of two scalar fields. We assume that the corresponding string has the worldsheet spatial direction discretized into $J$ bits, and use the fact that these bits become non-interacting when ’t Hooft coupling is zero.


1976 ◽  
Vol 29 (6) ◽  
pp. 347 ◽  
Author(s):  
M Gell-Mann

A descriptive review is given of gauge theories of weak, electromagnetic and strong interactions. The strong interactions are interpreted in terms of an unbroken Yang-Mills gauge theory based on SU(3) colour symmetry of quarks and gluons. The confinement mechanism of quarks, gluons and other nonsinglets is discussed. The unification of the weak and electromagnetic interactions through a broken Yang-Mills gauge theory is described. In total the basic constituents are then the quarks, leptons and gauge bosons.


2018 ◽  
Vol 175 ◽  
pp. 08004 ◽  
Author(s):  
Raghav G. Jha ◽  
Simon Catterall ◽  
David Schaich ◽  
Toby Wiseman

The lattice studies of maximally supersymmetric Yang-Mills (MSYM) theory at strong coupling and large N is important for verifying gauge/gravity duality. Due to the progress made in the last decade, based on ideas from topological twisting and orbifolding, it is now possible to study these theories on the lattice while preserving an exact supersymmetry on the lattice. We present some results from the lattice studies of two-dimensional MSYM which is related to Type II supergravity. Our results agree with the thermodynamics of different black hole phases on the gravity side and the phase transition (Gregory–Laflamme) between them.


2008 ◽  
Vol 2008 ◽  
pp. 1-4 ◽  
Author(s):  
L. Cieri ◽  
F. A. Schaposnik

We construct a dyon solution for the noncommutative version of the Yang-Mills-Higgs model with a ϑ-term. Extending the Noether method to the case of a noncommutative gauge theory, we analyze the effect of CP violation induced both by the ϑ-term and by noncommutativity proving that the Witten effect formula for the dyon charge remains the same as in ordinary space.


1999 ◽  
Vol 14 (21) ◽  
pp. 3421-3432 ◽  
Author(s):  
A. ASTE ◽  
G. SCHARF

We show for the case of interacting massless vector bosons, how the structure of Yang–Mills theories emerges automatically from a more fundamental concept, namely perturbative quantum gauge invariance. It turns out that the coupling in a non-Abelian gauge theory is necessarily of Yang–Mills type plus divergence- and coboundary-couplings. The extension of the method to massive gauge theories is briefly discussed.


2012 ◽  
Vol 862 (3) ◽  
pp. 650-670 ◽  
Author(s):  
Somdeb Chakraborty ◽  
Najmul Haque ◽  
Shibaji Roy

2003 ◽  
Vol 18 (31) ◽  
pp. 5647-5711 ◽  
Author(s):  
MATTEO BERTOLINI

We review in a pedagogical manner some of the efforts aimed at extending the gauge/gravity correspondence to nonconformal supersymmetric gauge theories in four dimensions. After giving a general overview, we discuss in detail two specific examples: fractional D-branes on orbifolds and D-branes wrapped on supersymmetric cycles of Calabi–Yau spaces. We explore in particular which gauge theory information can be extracted from the corresponding supergravity solutions, and what the remaining open problems are. We also briefly explain the connection between these and other approaches, such as fractional branes on conifolds, branes suspended between branes, M5-branes on Riemann surfaces and M-theory on G2-holonomy manifolds, and discuss the role played by geometric transitions in all that.


Sign in / Sign up

Export Citation Format

Share Document