scholarly journals On the boundedness of operators inLP(ιq)and Triebel-Lizorkin Spaces

2008 ◽  
Vol 6 (2) ◽  
pp. 177-186
Author(s):  
João Pedro Boto

Given a bounded linear operatorT:LPO(ℝn)→Lp1(ℝn), we state conditions under whichTdefines a bounded operator between corresponding pairs ofLp(ℝn;ιq)spaces and Triebel-Lizorkin spacesFp,qs(ℝn). Applications are given to linear parabolic equations and to Schrödinger semigroups.

2004 ◽  
Vol 2004 (50) ◽  
pp. 2695-2704
Author(s):  
Lahcène Mezrag ◽  
Abdelmoumene Tiaiba

Let0<p≤q≤+∞. LetTbe a bounded sublinear operator from a Banach spaceXinto anLp(Ω,μ)and let∇Tbe the set of all linear operators≤T. In the present paper, we will show the following. LetCbe a positive constant. For alluin∇T,Cpq(u)≤C(i.e.,uadmits a factorization of the formX→u˜Lq(Ω,μ)→MguLq(Ω,μ), whereu˜is a bounded linear operator with‖u˜‖≤C,Mguis the bounded operator of multiplication byguwhich is inBLr+(Ω,μ)(1/p=1/q+1/r),u=Mgu∘u˜andCpq(u)is the constant ofq-convexity ofu) if and only ifTadmits the same factorization; This is under the supposition that{gu}u∈∇Tis latticially bounded. Without this condition this equivalence is not true in general.


2018 ◽  
Vol 25 (1) ◽  
pp. 73-76
Author(s):  
Pablo Rocha

AbstractIn this note we show that if{f\in H^{p}(\mathbb{R}^{n})\cap L^{s}(\mathbb{R}^{n})}, where{0<p\leq 1<s<\infty}, then there exists a{(p,\infty)}-atomic decomposition which converges tofin{L^{s}(\mathbb{R}^{n})}. From this result, we obtain that a bounded linear operatorTon{L^{s}(\mathbb{R}^{n})}can be extended to a bounded operator from{H^{p}(\mathbb{R}^{n})}into{L^{p}(\mathbb{R}^{n})}if and only ifTis bounded uniformly in{L^{p}}norm on all{(p,\infty)}-atoms. A similar result is also obtained from{H^{p}(\mathbb{R}^{n})}into{H^{p}(\mathbb{R}^{n})}.


1985 ◽  
Vol 37 (5) ◽  
pp. 908-920
Author(s):  
A. D. Andrew

1. In this paper, we investigate the ranges of projections on certain Banach spaces of functions defined on a diadic tree. The notion of a “tree-like” Banach space is due to James 4], who used it to construct the separable space JT which has nonseparable dual and yet does not contain l1. This idea has proved useful. In [3], Hagler constructed a hereditarily c0 tree space, HT, and Schechtman [6] constructed, for each 1 ≦ p ≦ ∞, a reflexive Banach space, STp with a 1-unconditional basis which does not contain lp yet is uniformly isomorphic to for each n.In [1] we showed that if U is a bounded linear operator on JT, then there exists a subspace W ⊂ JT, isomorphic to JT such that either U or (1 — U) acts as an isomorphism on W and UW or (1 — U)W is complemented in JT. In this paper, we establish this result for the Hagler and Schechtman tree spaces.


2013 ◽  
Vol 95 (2) ◽  
pp. 158-168
Author(s):  
H.-Q. BUI ◽  
R. S. LAUGESEN

AbstractEvery bounded linear operator that maps ${H}^{1} $ to ${L}^{1} $ and ${L}^{2} $ to ${L}^{2} $ is bounded from ${L}^{p} $ to ${L}^{p} $ for each $p\in (1, 2)$, by a famous interpolation result of Fefferman and Stein. We prove ${L}^{p} $-norm bounds that grow like $O(1/ (p- 1))$ as $p\downarrow 1$. This growth rate is optimal, and improves significantly on the previously known exponential bound $O({2}^{1/ (p- 1)} )$. For $p\in (2, \infty )$, we prove explicit ${L}^{p} $ estimates on each bounded linear operator mapping ${L}^{\infty } $ to bounded mean oscillation ($\mathit{BMO}$) and ${L}^{2} $ to ${L}^{2} $. This $\mathit{BMO}$ interpolation result implies the ${H}^{1} $ result above, by duality. In addition, we obtain stronger results by working with dyadic ${H}^{1} $ and dyadic $\mathit{BMO}$. The proofs proceed by complex interpolation, after we develop an optimal dyadic ‘good lambda’ inequality for the dyadic $\sharp $-maximal operator.


1967 ◽  
Vol 7 (1) ◽  
pp. 1-6 ◽  
Author(s):  
Alessandro Figà-Talamanca ◽  
G. I. Gaudry

Let G be a locally compact Abelian Hausdorff group (abbreviated LCA group); let X be its character group and dx, dx be the elements of the normalised Haar measures on G and X respectively. If 1 < p, q < ∞, and Lp(G) and Lq(G) are the usual Lebesgue spaces, of index p and q respectively, with respect to dx, a multiplier of type (p, q) is defined as a bounded linear operator T from Lp(G) to Lq(G) which commutes with translations, i.e. τxT = Tτx for all x ∈ G, where τxf(y) = f(x+y). The space of multipliers of type (p, q) will be denoted by Lqp. Already, much attention has been devoted to this important class of operators (see, for example, [3], [4], [7]).


1991 ◽  
Vol 14 (3) ◽  
pp. 611-614 ◽  
Author(s):  
James R. Holub

It is shown that ifXis a uniformly convex Banach space andSa bounded linear operator onXfor which‖I−S‖=1, thenSis invertible if and only if‖I−12S‖<1. From this it follows that ifSis invertible onXthen either (i)dist(I,[S])<1, or (ii)0is the unique best approximation toIfrom[S], a natural (partial) converse to the well-known sufficient condition for invertibility thatdist(I,[S])<1.


2007 ◽  
Vol 49 (1) ◽  
pp. 145-154
Author(s):  
BRUCE A. BARNES

Abstract.LetTbe a bounded linear operator on a Banach spaceW, assumeWandYare in normed duality, and assume thatThas adjointT†relative toY. In this paper, conditions are given that imply that for all λ≠0, λ−Tand λ −T†maintain important standard operator relationships. For example, under the conditions given, λ −Thas closed range if, and only if, λ −T†has closed range.These general results are shown to apply to certain classes of integral operators acting on spaces of continuous functions.


1991 ◽  
Vol 43 (2) ◽  
pp. 241-250 ◽  
Author(s):  
J.N. Pandey ◽  
O.P. Singh

It is shown that a bounded linear operator T from Lρ(Rn) to itself which commutes both with translations and dilatations is a finite linear combination of Hilbert-type transforms. Using this we show that the ρ-norm of the Hilbert transform is the same as the ρ-norm of its truncation to any Lebesgue measurable subset of Rn with non-zero measure.


2018 ◽  
Vol 2018 ◽  
pp. 1-6
Author(s):  
Zhong-Qi Xiang

We obtain a new inequality for frames in Hilbert spaces associated with a scalar and a bounded linear operator induced by two Bessel sequences. It turns out that the corresponding results due to Balan et al. and Găvruţa can be deduced from our result.


2003 ◽  
Vol 4 (2) ◽  
pp. 301
Author(s):  
A. Bourhim

<p>In this talk, to be given at a conference at Seconda Università degli Studi di Napoli in September 2001, we shall describe the set of analytic bounded point evaluations for an arbitrary cyclic bounded linear operator T on a Hilbert space H and shall answer some questions due to L. R. Williams.</p>


Sign in / Sign up

Export Citation Format

Share Document