scholarly journals Seasonal Effects on a Beddington-DeAngelis Type Predator-Prey System with Impulsive Perturbations

2009 ◽  
Vol 2009 ◽  
pp. 1-19 ◽  
Author(s):  
Hunki Baek ◽  
Younghae Do

We study a Beddington-DeAngelis type predator-prey system with impulsive perturbation and seasonal effects. First, we numerically observe the influence of seasonal effects on the system without impulsive perturbations. Next, we find the conditions for the local and global stabilities of prey-free periodic solutions by using Floquet theory for the impulsive equation and small amplitude perturbation skills, and for the permanence of the system via comparison theorem. Finally, we show that seasonal effects and impulsive perturbation can give birth to various kinds of dynamical behavior of the system including chaotic phenomena by numerical simulations.

2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Sun Shulin ◽  
Guo Cuihua

In view of the logical consistence, the model of a two-prey one-predator system with Beddington-DeAngelis functional response and impulsive control strategies is formulated and studied systematically. By using the Floquet theory of impulsive equation, small amplitude perturbation method, and comparison technique, we obtain the conditions which guarantee the global asymptotic stability of the two-prey eradication periodic solution. We also proved that the system is permanent under some conditions. Numerical simulations find that the system appears the phenomenon of competition exclusion.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Jianglin Zhao ◽  
Min Zhao ◽  
Hengguo Yu

A diffusive predator-prey system with prey refuge is studied analytically and numerically. The Turing bifurcation is analyzed in detail, which in turn provides a theoretical basis for the numerical simulation. The influence of prey refuge and group defense on the equilibrium density and patterns of species under the condition of Turing instability is explored by numerical simulations, and this shows that the prey refuge and group defense have an important effect on the equilibrium density and patterns of species. Moreover, it can be obtained that the distributions of species are more sensitive to group defense than prey refuge. These results are expected to be of significance in exploration for the spatiotemporal dynamics of ecosystems.


2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Yanyan Hu ◽  
Mei Yan ◽  
Zhongyi Xiang

We investigate the dynamic behaviors of a two-prey one-predator system with stage structure and birth pulse for predator. By using the Floquet theory of linear periodic impulsive equation and small amplitude perturbation method, we show that there exists a globally asymptotically stable two-prey eradication periodic solution when the impulsive period is less than some critical value. Further, we study the permanence of the investigated model. Our results provide valuable strategy for biological economics management. Numerical analysis is also inserted to illustrate the results.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-19
Author(s):  
Kankan Sarkar ◽  
Subhas Khajanchi ◽  
Prakash Chandra Mali ◽  
Juan J. Nieto

In this study, we investigate a mathematical model that describes the interactive dynamics of a predator-prey system with different kinds of response function. The positivity, boundedness, and uniform persistence of the system are established. We investigate the biologically feasible singular points and their stability analysis. We perform a comparative study by considering different kinds of functional responses, which suggest that the dynamical behavior of the system remains unaltered, but the position of the bifurcation points altered. Our model system undergoes Hopf bifurcation with respect to the growth rate of the prey population, which indicates that a periodic solution occurs around a fixed point. Also, we observed that our predator-prey system experiences transcritical bifurcation for the prey population growth rate. By using normal form theory and center manifold theorem, we investigate the direction and stability of Hopf bifurcation. The biological implications of the analytical and numerical findings are also discussed in this study.


Sign in / Sign up

Export Citation Format

Share Document