scholarly journals Numerical Exploration of Kaldorian Interregional Macrodynamics: Enhanced Stability and Predominance of Period Doubling under Flexible Exchange Rates

2010 ◽  
Vol 2010 ◽  
pp. 1-29 ◽  
Author(s):  
Toichiro Asada ◽  
Christos Douskos ◽  
Vassilis Kalantonis ◽  
Panagiotis Markellos

We present a discrete two-regional Kaldorian macrodynamic model with flexible exchange rates and explore numerically the stability of equilibrium and the possibility of generation of business cycles. We use a grid search method in two-dimensional parameter subspaces, and coefficient criteria for the flip and Hopf bifurcation curves, to determine the stability region and its boundary curves in several parameter ranges. The model is characterized by enhanced stability of equilibrium, while its predominant asymptotic behavior when equilibrium is unstable is period doubling. Cycles are scarce and short-lived in parameter space, occurring at large values of the degree of capital movementβ. By contrast to the corresponding fixed exchange rates system, for cycles to occur sufficient amount of trade is requiredtogetherwith high levels of capital movement. Rapid changes in exchange rate expectations and decreased government expenditure are factors contributing to the creation of interregional cycles. Examples of bifurcation and Lyapunov exponent diagrams illustrating period doubling or cycles, and their development into chaotic attractors, are given. The paper illustrates the feasibility and effectiveness of the numerical approach for dynamical systems of moderately high dimensionality and several parameters.

2008 ◽  
Vol 2008 ◽  
pp. 1-23 ◽  
Author(s):  
Toichiro Asada ◽  
Christos Douskos ◽  
Panagiotis Markellos

We explore a discrete Kaldorian macrodynamic model of an open economy with flexible exchange rates, focusing on the effects of variation of the model parameters, the speed of adjustment of the goods marketα, and the degree of capital mobilityβ. We determine by a numerical grid search method the stability region in parameter space and find that flexible rates cause enhanced stability of equilibrium with respect to variations of the parameters. We identify the Hopf-Neimark bifurcation curve and the flip bifurcation curve, and find that the period doubling cascades which leads to chaos is the dominant behavior of the system outside the stability region, persisting to large values ofβ. Cyclical behavior of noticeable presence is detected for some extreme values of a state parameter. Bifurcation and Lyapunov exponent diagrams are computed illustrating the complex dynamics involved. Examples of attractors and trajectories are presented. The effect of the speed of adaptation of the expected rate is also briefly discussed. Finally, we explore a special model variation incorporating the “wealth effect” which is found to behave similarly to the basic model, contrary to the model of fixed exchange rates in which incorporation of this effect causes an entirely different behavior.


1969 ◽  
Vol 2 (2) ◽  
pp. 324 ◽  
Author(s):  
R. G. Penner ◽  
G. Hartley Mellish ◽  
Robert G. Hawkins

2020 ◽  
Vol 30 (11) ◽  
pp. 2050161
Author(s):  
Arnob Ray ◽  
Dibakar Ghosh

We propose a new simple three-dimensional continuous autonomous model with two nonlinear terms and observe the dynamical behavior with respect to system parameters. This system changes the stability of fixed point via Hopf bifurcation and then undergoes a cascade of period-doubling route to chaos. We analytically derive the first Lyapunov coefficient to investigate the nature of Hopf bifurcation. We investigate well-separated regions for different kinds of attractors in the two-dimensional parameter space. Next, we introduce a timescale ratio parameter and calculate the slow manifold using geometric singular perturbation theory. Finally, the chaotic state annihilates by decreasing the value of the timescale ratio parameter.


Author(s):  
Eric B. Halfmann ◽  
C. Steve Suh ◽  
N. P. Hung

The workpiece and tool vibrations in a lathe are experimentally studied to establish improved understanding of cutting dynamics that would support efforts in exceeding the current limits of the turning process. A Keyence laser displacement sensor is employed to monitor the workpiece and tool vibrations during chatter-free and chatter cutting. A procedure is developed that utilizes instantaneous frequency (IF) to identify the modes related to measurement noise and those innate of the cutting process. Instantaneous frequency is shown to thoroughly characterize the underlying turning dynamics and identify the exact moment in time when chatter fully developed. That IF provides the needed resolution for identifying the onset of chatter suggests that the stability of the process should be monitored in the time-frequency domain to effectively detect and characterize machining instability. It is determined that for the cutting tests performed chatters of the workpiece and tool are associated with the changing of the spectral components and more specifically period-doubling bifurcation. The analysis presented provides a view of the underlying dynamics of the lathe process which has not been experimentally observed before.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
N. H. Sweilam ◽  
S. M. Al-Mekhlafi ◽  
A. O. Albalawi ◽  
D. Baleanu

Abstract In this paper, a novel coronavirus (2019-nCov) mathematical model with modified parameters is presented. This model consists of six nonlinear fractional order differential equations. Optimal control of the suggested model is the main objective of this work. Two control variables are presented in this model to minimize the population number of infected and asymptotically infected people. Necessary optimality conditions are derived. The Grünwald–Letnikov nonstandard weighted average finite difference method is constructed for simulating the proposed optimal control system. The stability of the proposed method is proved. In order to validate the theoretical results, numerical simulations and comparative studies are given.


2021 ◽  
Vol 11 (4) ◽  
pp. 1395
Author(s):  
Abdelali El Aroudi ◽  
Natalia Cañas-Estrada ◽  
Mohamed Debbat ◽  
Mohamed Al-Numay

This paper presents a study of the nonlinear dynamic behavior a flying capacitor four-level three-cell DC-DC buck converter. Its stability analysis is performed and its stability boundaries is determined in the multi-dimensional paramertic space. First, the switched model of the converter is presented. Then, a discrete-time controller for the converter is proposed. The controller is is responsible for both balancing the flying capacitor voltages from one hand and for output current regulation. Simulation results from the switched model of the converter under the proposed controller are presented. The results show that the system may undergo bifurcation phenomena and period doubling route to chaos when some system parameters are varied. One-dimensional bifurcation diagrams are computed and used to explore the possible dynamical behavior of the system. By using Floquet theory and Filippov method to derive the monodromy matrix, the bifurcation behavior observed in the converter is accurately predicted. Based on justified and realistic approximations of the system state variables waveforms, simple and accurate expressions for these steady-state values and the monodromy matrix are derived and validated. The simple expression of the steady-state operation and the monodromy matrix allow to analytically predict the onset of instability in the system and the stability region in the parametric space is determined. Numerical simulations from the exact switched model validate the theoretical predictions.


Sign in / Sign up

Export Citation Format

Share Document