scholarly journals Simulation of Equatorial von Neumann Measurements on GHZ States Using Nonlocal Resources

2010 ◽  
Vol 2010 ◽  
pp. 1-14 ◽  
Author(s):  
Jean-Daniel Bancal ◽  
Cyril Branciard ◽  
Nicolas Gisin

Reproducing with elementary resources the correlations that arise when a quantum system is measured (quantum state simulation) allows one to get insight on the operational and computational power of quantum correlations. We propose a family of models that can simulate von Neumann measurements in thex−yplane of the Bloch sphere onn-partite GHZ states. For the tripartite and fourpartite states, the models use only bipartite nonlocal boxes; they can be translated into classical communication schemes with finite average communication cost.

2010 ◽  
Vol 10 (11&12) ◽  
pp. 901-910
Author(s):  
Karol Horodecki ◽  
Michal Horodecki ◽  
Pawel Horodecki

We provide operational definition of asymmetry of entanglement: An entangled state contains asymmetric entanglement if its subsystems can not be exchanged (swapped) by means of local operations and classical communication. We show that in general states have asymmetric entanglement. This allows to construct nonsymmetric measure of entanglement, and a parameter that reports asymmetry of entanglement contents of quantum state. We propose asymptotic measure of asymmetry of entanglement, and show that states for which it is nonzero, contain necessarily bound entanglement.


2020 ◽  
Vol 35 (19) ◽  
pp. 2050161
Author(s):  
F. M. Ciaglia ◽  
F. Di Cosmo ◽  
A. Ibort ◽  
G. Marmo ◽  
L. Schiavone ◽  
...  

An explicit Lagrangian description is given for the Heisenberg equation on the algebra of operators of a quantum system, and for the Landau–von Neumann equation on the manifold of quantum states which are isospectral with respect to a fixed reference quantum state.


Author(s):  
Igor Devetak ◽  
Andreas Winter

We study and solve the problem of distilling a secret key from quantum states representing correlation between two parties (Alice and Bob) and an eavesdropper (Eve) via one–way public discussion: we prove a coding theorem to achieve the ‘wire–tapper’ bound, the difference of the mutual information Alice–Bob and that of Alice–Eve, for so–called classical–quantum–quantum–correlations, via one–way public communication. This result yields information–theoretic formulae for the distillable secret key, giving ‘ultimate’ key rate bounds if Eve is assumed to possess a purification of Alice and Bob's joint state. Specializing our protocol somewhat and making it coherent leads us to a protocol of entanglement distillation via one–way LOCC (local operations and classical communication) which is asymptotically optimal: in fact we prove the so–called ‘hashing inequality’, which says that the coherent information (i.e. the negative conditional von Neumann entropy) is an achievable Einstein–Podolsky–Rosen rate. This result is known to imply a whole set of distillation and capacity formulae, which we briefly review.


2012 ◽  
Vol 10 (05) ◽  
pp. 1250060 ◽  
Author(s):  
M. DAOUD ◽  
R. AHL LAAMARA

The quantum discord is used as measure of quantum correlations for two families of multipartite coherent states. The first family interpolates between generalized GHZ states and generalized Werner states. The second one is an interpolation between generalized GHZ and the ground state of the multipartite quantum system. Two inequivalent ways to split the system in a pair of qubits are introduced. The explicit expressions of quantum quantum discord in multipartite coherent states are derived. Its evaluation uses the Koashi–Winter relation in optimizing the conditional entropy. The temporal evolution of quantum correlations (quantum discord and entanglement) is also discussed.


2003 ◽  
Vol 3 (2) ◽  
pp. 157-164
Author(s):  
H. Bechmann-Pasquinucci ◽  
N. Gisin

We present a generalized Bell inequality for two entangled quNits. On one quNit the choice is between two standard von Neumann measurements, whereas for the other quNit there are N^2 different binary measurements. These binary measurements are related to the intermediate states known from eavesdropping in quantum cryptography. The maximum violation by \sqrt{N} is reached for the maximally entangled state. Moreover, for N=2 it coincides with the familiar CHSH-inequality.


Author(s):  
Y. Yugra ◽  
F. De Zela

Coherence and quantum correlations have been identified as fundamental resources for quantum information tasks. As recently shown, these resources can be interconverted. In multipartite systems, entanglement represents a prominent case among quantum correlations, one which can be activated from coherence. All this makes coherence a key resource for securing the operational advantage of quantum technologies. When dealing with open systems, decoherence hinders full exploitation of quantum resources. Here, we present a protocol that allows reaching the maximal achievable amount of coherence in an open quantum system. By implementing our protocol, or suitable variants of it, coherence losses might be fully compensated, thereby leading to coherence revivals. We provide an experimental proof of principle of our protocol through its implementation with an all-optical setup.


2019 ◽  
Vol 26 (04) ◽  
pp. 1950023
Author(s):  
Salvatore Lorenzo ◽  
Mauro Paternostro ◽  
G. Massimo Palma

Quantum non-Markovianity and quantum Darwinism are two phenomena linked by a common theme: the flux of quantum information between a quantum system and the quantum environment it interacts with. In this work, making use of a quantum collision model, a formalism initiated by Sudarshan and his school, we will analyse the efficiency with which the information about a single qubit gained by a quantum harmonic oscillator, acting as a meter, is transferred to a bosonic environment. We will show how, in some regimes, such quantum information flux is inefficient, leading to the simultaneous emergence of non-Markovian and non-darwinistic behaviours.


Sign in / Sign up

Export Citation Format

Share Document