scholarly journals Quantum Entanglement: Separability, Measure, Fidelity of Teleportation, and Distillation

2010 ◽  
Vol 2010 ◽  
pp. 1-57 ◽  
Author(s):  
Ming Li ◽  
Shao-Ming Fei ◽  
Xianqing Li-Jost

Quantum entanglement plays crucial roles in quantum information processing. Quantum entangled states have become the key ingredient in the rapidly expanding field of quantum information science. Although the nonclassical nature of entanglement has been recognized for many years, considerable efforts have been taken to understand and characterize its properties recently. In this review, we introduce some recent results in the theory of quantum entanglement. In particular separability criteria based on the Bloch representation, covariance matrix, normal form and entanglement witness, lower bounds, subadditivity property of concurrence and tangle, fully entangled fraction related to the optimal fidelity of quantum teleportation, and entanglement distillation will be discussed in detail.

2021 ◽  
Vol 1 ◽  

Dynamics of photoinduced quantum entanglement generation between phonons is theoretically revealed. The results contribute to the study of fundamental theoretical problems within quantum dynamics of photoinduced phase transitions and quantum information science.


2021 ◽  
Author(s):  
Oliver Keith Baker

We demonstrate that several anomalies seen in data from high energy physics experiments have their origin in quantum entanglement, and quantum information science more generally. A few examples are provided that help clarify this proposition. Our research clearly shows that there is a thermal behavior in particle kinematics from high energy collisions at both collider and fixed target experiments that can be attributed to quantum entanglement and entanglement entropy. And in those cases where no quantum entanglement is expected, the thermal component in the kinematics is absent, in agreement with our hypothesis. We show evidence that these phenomena are interaction independent, but process dependent, using results from proton-proton scattering at the Large Hadron Collider (LHC) and antineutrino-nucleus scattering at Fermilab. That is, this thermal behavior due to quantum entanglement is shown to exist in both the strong and electroweak interactions. However, the process itself must include quantum entanglement in the corresponding wave functions of interacting systems in order for there to be thermalization.


Science ◽  
2020 ◽  
Vol 370 (6522) ◽  
pp. 1309-1312 ◽  
Author(s):  
S. L. Bayliss ◽  
D. W. Laorenza ◽  
P. J. Mintun ◽  
B. D. Kovos ◽  
D. E. Freedman ◽  
...  

Spin-bearing molecules are promising building blocks for quantum technologies as they can be chemically tuned, assembled into scalable arrays, and readily incorporated into diverse device architectures. In molecular systems, optically addressing ground-state spins would enable a wide range of applications in quantum information science, as has been demonstrated for solid-state defects. However, this important functionality has remained elusive for molecules. Here, we demonstrate such optical addressability in a series of synthesized organometallic, chromium(IV) molecules. These compounds display a ground-state spin that can be initialized and read out using light and coherently manipulated with microwaves. In addition, through atomistic modification of the molecular structure, we vary the spin and optical properties of these compounds, indicating promise for designer quantum systems synthesized from the bottom-up.


2012 ◽  
Author(s):  
Paul M. Alsing ◽  
Michael L. Fanto

2020 ◽  
Author(s):  
Cherie R. Kagan ◽  
Lee C. Bassett ◽  
Christopher B. Murray ◽  
Sarah M. Thompson

2015 ◽  
Vol 17 (46) ◽  
pp. 30805-30816 ◽  
Author(s):  
Cathal Smyth ◽  
Daniel G. Oblinsky ◽  
Gregory D. Scholes

Delocalization of a model light-harvesting complex is investigated using multipartite measures inspired by quantum information science.


Nanophotonics ◽  
2016 ◽  
Vol 5 (3) ◽  
pp. 469-482 ◽  
Author(s):  
Genta Masada ◽  
Akira Furusawa

AbstractEntanglement is an essential feature of quantum theory and the core of the majority of quantum information science and technologies. Quantum computing is one of the most important fruits of quantum entanglement and requires not only a bipartite entangled state but also more complicated multipartite entanglement. In previous experimental works to demonstrate various entanglement-based quantum information processing, light has been extensively used. Experiments utilizing such a complicated state need highly complex optical circuits to propagate optical beams and a high level of spatial interference between different light beams to generate quantum entanglement or to efficiently perform balanced homodyne measurement. Current experiments have been performed in conventional free-space optics with large numbers of optical components and a relatively large-sized optical setup. Therefore, they are limited in stability and scalability. Integrated photonics offer new tools and additional capabilities for manipulating light in quantum information technology. Owing to integrated waveguide circuits, it is possible to stabilize and miniaturize complex optical circuits and achieve high interference of light beams. The integrated circuits have been firstly developed for discrete-variable systems and then applied to continuous-variable systems. In this article, we review the currently developed scheme for generation and verification of continuous-variable quantum entanglement such as Einstein-Podolsky-Rosen beams using a photonic chip where waveguide circuits are integrated. This includes balanced homodyne measurement of a squeezed state of light. As a simple example, we also review an experiment for generating discrete-variable quantum entanglement using integrated waveguide circuits.


Sign in / Sign up

Export Citation Format

Share Document