scholarly journals Existence and Uniqueness Results for Perturbed Neumann Boundary Value Problems

2010 ◽  
Vol 2010 (1) ◽  
pp. 494210 ◽  
Author(s):  
Jieming Zhang ◽  
Chengbo Zhai
2020 ◽  
Vol 25 (3) ◽  
pp. 409-420 ◽  
Author(s):  
Saleh S. Almuthaybiri ◽  
Christopher C. Tisdell

The purpose of this note is to sharpen Smirnov’s recent work on existence and uniqueness of solutions to third-order ordinary differential equations that are subjected to two- and three-point boundary conditions. The advancement is achieved in the following ways. Firstly, we provide sharp and sharpened estimates for integrals regarding various Green’s functions. Secondly, we apply these sharper estimates to problems in conjunction with Banach’s fixed point theorem. Thirdly, we apply Rus’s contraction mapping theorem in a metric space, where two metrics are employed. Our new results improve those of Smirnov by showing that a larger class of boundary value problems admit a unique solution.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Ali El Mfadel ◽  
Said Melliani ◽  
M’hamed Elomari

In this paper, we investigate the existence and uniqueness results of intuitionistic fuzzy local and nonlocal fractional boundary value problems by employing intuitionistic fuzzy fractional calculus and some fixed-point theorems. As an application, we conclude this manuscript by giving an example to illustrate the obtained results.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
KumSong Jong ◽  
HuiChol Choi ◽  
KyongJun Jang ◽  
SunAe Pak

In this paper, we study the existence and uniqueness of positive solutions to a class of multipoint boundary value problems for singular fractional differential equations with the p-Laplacian operator. Here, the nonlinear source term f permits singularity with respect to its time variable t. Some fixed-point theorems such as the Leray-Schauder nonlinear alternative, the Schauder fixed-point theorem, and the Banach contraction mapping principle and the properties of the Gauss hypergeometric function are used to prove our main results. And by employing the upper and lower solutions technique, we derive a new approach to obtain the maximal and minimal solutions to the given problem. Finally, we present some examples to demonstrate our existence and uniqueness results.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Imed Bachar ◽  
Hassan Eltayeb

Abstract We establish the existence, uniqueness, and positivity for the fractional Navier boundary value problem: $$\begin{aligned} \textstyle\begin{cases} D^{\alpha }(D^{\beta }\omega )(t)=h(t,\omega (t),D^{\beta }\omega (t)), & 0< t< 1, \\ \omega (0)=\omega (1)=D^{\beta }\omega (0)=D^{\beta }\omega (1)=0, \end{cases}\displaystyle \end{aligned}$$ { D α ( D β ω ) ( t ) = h ( t , ω ( t ) , D β ω ( t ) ) , 0 < t < 1 , ω ( 0 ) = ω ( 1 ) = D β ω ( 0 ) = D β ω ( 1 ) = 0 , where $\alpha,\beta \in (1,2]$ α , β ∈ ( 1 , 2 ] , $D^{\alpha }$ D α and $D^{\beta }$ D β are the Riemann–Liouville fractional derivatives. The nonlinear real function h is supposed to be continuous on $[0,1]\times \mathbb{R\times R}$ [ 0 , 1 ] × R × R and satisfy appropriate conditions. Our approach consists in reducing the problem to an operator equation and then applying known results. We provide an approximation of the solution. Our results extend those obtained in (Dang et al. in Numer. Algorithms 76(2):427–439, 2017) to the fractional setting.


Sign in / Sign up

Export Citation Format

Share Document