scholarly journals Analytical Solution for Different Profiles of Fin with Temperature-Dependent Thermal Conductivity

2010 ◽  
Vol 2010 ◽  
pp. 1-15 ◽  
Author(s):  
A. Moradi ◽  
H. Ahmadikia

Three different profiles of the straight fin that has a temperature-dependent thermal conductivity are investigated by differential transformation method (DTM) and compared with numerical solution. Fin profiles are rectangular, convex, and exponential. For validation of the DTM, the heat equation is solved numerically by the fourth-order Runge-Kutta method. The temperature distribution, fin efficiency, and fin heat transfer rate are presented for three fin profiles and a range of values of heat transfer parameters. DTM results indicate that series converge rapidly with high accuracy. The efficiency and base temperature of the exponential profile are higher than the rectangular and the convex profiles. The results indicate that the numerical data and analytical method are in agreement with each other.

2013 ◽  
Vol 17 (4) ◽  
pp. 1049-1060 ◽  
Author(s):  
Amir Moradi ◽  
Reza Rafiee

In this article, the simultaneous convection-radiation heat transfer of a moving fin of variable thermal conductivity is studied. The differential transformation method (DTM) is applied for an analytic solution for heat transfer in fin with two different profiles. Fin profiles are rectangular and exponential. The accuracy of analytic solution is validated by comparing it with the numerical solution that is obtained by fourth-order Runge-Kutta method. The analytical and numerical results are shown for different values of the embedding parameters. DTM results show that series converge rapidly with high accuracy. The results indicate that the fin tip temperature increases when ambient temperature increases. Conversely, the fin tip temperature decreases with an increase in the Peclet number, convection-conduction and radiation-conduction parameters. It is shown that the fin tip temperature of the exponential profile is higher than the rectangular one. The results indicate that the numerical data and analytical method are in a good agreement with each other.


2016 ◽  
Vol 71 (12) ◽  
pp. 1105-1110
Author(s):  
H.Q. Kafri ◽  
S.A. Khuri ◽  
Ali Sayfy

AbstractThis article introduces a new numerical approach to solve the equation that models a rectangular purely convecting fin with temperature-dependent thermal conductivity. The algorithm embeds an integral operator, defined in terms of Green’s function, into Krasnoselskii–Mann’s fixed point iteration scheme. The validity of the method is demonstrated by a number of examples that consist of a range of values of the parameters that appear in the model. In addition, the evaluation of the fin efficiency is presented. The residual error computations show that the current method provides highly accurate approximations.


2020 ◽  
Vol 98 (7) ◽  
pp. 700-712 ◽  
Author(s):  
Sheng-Wei Sun ◽  
Xian-Fang Li

This paper studies a class of nonlinear problems of convective longitudinal fins with temperature-dependent thermal conductivity and heat transfer coefficient. For thermal conductivity and heat transfer coefficient dominated by power-law nonlinearity, the exact temperature distribution is obtained analytically in an implicit form. In particular, the explicit expressions of the fin temperature distribution are derived explicitly for some special cases. An analytical expression for fin efficiency is given as a function of a thermogeometric parameter. The influences of the nonlinearity and the thermogeometric parameter on the temperature and thermal performance are analyzed. The temperature distribution and the fin efficiency exhibit completely different behaviors when the power-law exponent of the heat transfer coefficient is more or less than negative unity.


2016 ◽  
Vol 138 (11) ◽  
Author(s):  
Mahdi Anbarloei ◽  
Elyas Shivanian

In the current paper, the nonlinear fin problem with temperature-dependent thermal conductivity and heat transfer coefficient is revisited. In this problem, it has been assumed that the heat transfer coefficient is expressed in a power-law form and the thermal conductivity is a linear function of temperature. It is shown that its governing nonlinear differential equation is exactly solvable. A full discussion and exact analytical solution in the implicit form are given for further physical interpretation and it is proved that three possible cases may occur: there is no solution to the problem, the solution is unique, and the solutions are dual depending on the values of the parameters of the model. Furthermore, we give exact analytical expressions of fin efficiency as a function of thermogeometric fin parameter.


2016 ◽  
Vol 139 (2) ◽  
Author(s):  
Rishi Roy ◽  
Sujit Ghosal

A recent mathematical technique of homotopy perturbation method (HPM) for solving nonlinear differential equations has been applied in this paper for the analysis of steady-state heat transfer in an annular fin with temperature-dependent thermal conductivity and with the variation of thermogeometric fin parameters. Excellent benchmark agreement indicates that this method is a very simple but powerful technique and practical for solving nonlinear heat transfer equations and does not require large memory space that arises out of discretization of equations in numerical computations, particularly for multidimensional problems. Three conditions of heat transfer, namely, convection, radiation, and combined convection and radiation, are considered. Dimensionless parameters pertinent to design optimization are identified and their effects on fin heat transfer and efficiency are studied. Results indicate that the heat dissipation under combined mode from the fin surface is a convection-dominant phenomenon. However, it is also found that, at relatively high base temperature, radiation heat transfer becomes comparable to pure convection. It is worth noting that, for pure radiation condition, the dimensionless parameter of aspect ratio (AR) of a fin is a more desirable controlling parameter compared to other parameters in augmenting heat transfer rate without much compromise on fin efficiency.


2017 ◽  
Vol 21 (2) ◽  
pp. 939-952 ◽  
Author(s):  
Gokhan Sevilgen

In this paper, heat transfer characteristics of a straight fin having temperature-dependent thermal conductivity were computed by using 3-D CFD analysis and MATLAB differential equation solver. The computations were performed with two different cases having both constant and linear function for thermal conductivity property. The CFD and MATLAB results were in good agreement with the data available in the literature. With the help of using these numerical techniques, fin efficiency can be improved and heat transfer rate of fins can be augmented by changing fin materials with variable thermal properties and air-flow conditions. Application of the proposed method can be effectively extended to solve the class of similar non-linear fin problems in engineering and sciences.


Sign in / Sign up

Export Citation Format

Share Document