scholarly journals Synthesis of Nanoporous TiO2and Its Potential Applicability for Dye-Sensitized Solar Cell Using Antocyanine Black Rice

2010 ◽  
Vol 2010 ◽  
pp. 1-6 ◽  
Author(s):  
Brian Yuliarto ◽  
Wilman Septina ◽  
Kasyful Fuadi ◽  
Fahiem Fanani ◽  
Lia Muliani ◽  
...  

Nanoporous mesostructure TiO2powders were synthesized by sol-gel method, withTiCl4as a precursor in methanol solution. The Pluronic PE 6200 of block copolymer was used as the pores template. It was found from XRD measurements, both at400∘C and450∘C calcination temperatures, that the sol-gel technique yielded the nanoporous TiO2with anatase phase. Based onN2adsorption characterization using BET method, the TiO2samples have surface area of 108 m2/g and 88 m2/g for calcination temperatures of400∘C and of450∘C, respectively. From small-angle neutron scattering (SANS) patterns, TiO2samples were observed to have nanoporous structures with pore sizes between 22–24 nm. The TiO2also have order degree which depends on the calcination temperature. The potential applicability of the resulting TiO2is confirmed for dye-sensitized solar cell (DSSC), composed of nanoporous anatase TiO2and natural dye from antocyanine black rice. UV-Vis measurement of dye extracted from the black rice indicated that the antocyanine chelate can propagate into the TiO2nanoporous network. The short circuit photocurrent density (Jsc) under 100 mWcm−2reached 1.287 mAcm−2with open circuit photovoltage (Voc) of 550 mV and the fill factor of 33.4%. The results show that the hybrid organic-inorganic structures are very attractive for future low-cost devices.

2013 ◽  
Vol 789 ◽  
pp. 28-32 ◽  
Author(s):  
Bambang Priyono ◽  
Akhmad Herman Yuwono ◽  
B. Munir ◽  
A. Rahman ◽  
A. Maulana ◽  
...  

Dye-sensitized solar cell (DSSC) is one of the very promising alternative renewable energy sources to anticipate the diminishing in the fossil fuel reserves in the next few decades and to make use of the abundance of intensive sunlight energy in tropical countries like Indonesia. TiO2nanoparticles have been used as the photo electrode in DSSC because of its high surface area and allow the adsorption of a large number of dye molecules. In the present study, TiO2aerogel have been synthesized via sol-gel process with water to inorganic precursor ratio (Rw) of 2.00, followed with subsequent drying by CO2supercritical extraction (SCE). As comparison, the TiO2xerogel was also prepared by conventional drying and annealing. Both types of gels were subjected to conventional and multi-step annealing. The resulting nanoparticles in aerogel and xerogel have a band-gap energy of 3.10 and 3.04 eV, respectively. The open circuit voltage (Voc) measurement reveals that the DSSC fabricated with aerogel provided a higher voltage (21,40 mV) than xerogel (1,10 mV).


2019 ◽  
Vol 26 (03) ◽  
pp. 1850164 ◽  
Author(s):  
SWATI S. KULKARNI ◽  
S. S. HUSSAINI ◽  
GAJANAN A. BODKHE ◽  
MAHENDRA D. SHIRSAT

Titanium dioxide (TiO[Formula: see text] nanoparticles have been synthesized by the cost effective Sol–Gel technique. Characteristics of TiO2 nanoparticles were investigated by X-ray diffraction and Fourier Transform Infrared spectroscopy. The Eosin Y dye and dye extracted from Hibiscus tea have been successfully used in fabrication of the dye sensitized solar cell. The photovoltaic performance of the dye sensitized solar cell indicates that the short circuit photo current, open circuit voltage and efficiency of the DSSC using Eosin Y dye is 10 times more compared to the DSSC using the Hibiscus dye.


2015 ◽  
Vol 793 ◽  
pp. 450-454 ◽  
Author(s):  
N. Gomesh ◽  
R. Syafinar ◽  
Muhamad Irwanto ◽  
Y.M. Irwan ◽  
M. Fareq ◽  
...  

Dye-sensitized solar cell (DSSC) consists of TiO2 nanoporous coating which acts as a photo electrode, a sensitizer of dye molecules soaked in the TiO2 film, liquid electrolyte and a counter electrode. This paper focuses on the usage of a sensitizer from the Pitaya fruit. Pitaya or commonly known as dragon fruit (Hylocereus polyrhizus) was extracted and used as a sensitizer to fabricate the dye sensitized solar cell (DSSC). The photoelectrochemical performance of Pitaya based solar cell shows an open circuit voltage (VOC) of 237 mV, short circuit current (ISC) of 4.98 mA, fill factor (FF) of 0.51, solar cell efficiency (η) of 0.70 % and has a peak absorbance rate of 2.7 at 550 nm. The photoelectrochemical and UV-Visible light absorbance performance of Pitaya-DSSC shows good potential in future solar cell fabrication.


2011 ◽  
Vol 415-417 ◽  
pp. 1586-1589
Author(s):  
Yu Hua Dai ◽  
Xiao Lei Sun ◽  
Jing Lian Wang ◽  
Ming Shan Yang

A series of copolymers P(VP-HEMA) composed of hydroxyl ethyl methacrylate (HEMA) and 4-vinyl pyridine (VP) were prepared by a solution copolymerization technique. Based on the copolymer P(VP-HEMA) prepared by the content of VP 50%, the amount of AIBN 3% and the optimized liquid electrolyte, a polymer solution electrolyte with concentration of 9.0% was formed. By addition of 1,4-dibromobutane into the solution, the copolymer gel electrolyte with higher conductivity 6.14mS/cm was prepared. Gelation is caused by the quaterisation between the group of pyridine in P(HEMA-VP) and 1,4-dibromobutane. Based on the copolymer gel electrolyte, a dye-sensitized solar cell was fabricated with short-circuit current of 13.62mA/cm2,open circuit voltage of 0.72V, fill factor of 0.5465 and an overall conversion efficiency of 5.24% under irradiation 100mW/cm2(AM1.5).


2014 ◽  
Vol 1070-1072 ◽  
pp. 616-619
Author(s):  
Wen Bo Xiao ◽  
Jin Dai ◽  
Guo Hua Tu ◽  
Hua Ming Wu

The dye-sensitized solar cell performances influenced by radiant intensity and illuminated area in concentrating photovoltaic system are investigated experimentally and discussed theoretically. The results show that, under the same irradiated cells area, the short-circuit current is linearly increasing with the radiant intensity and the open-circuit voltage follows a logarithmic function of the radiant intensity. And, it is turned out that the short-circuit current and open-circuit voltage are obviously enhanced by increasing the illuminated cells surface area at the same radiant intensity. However, that growth trends will decline with an increase of the illuminated area. The reason is more defects involved in the process of increasing illumination area. All results can be interpreted using an equivalent circuit of a single diode model. A good agreement can be observed from the fitting curves. It is of great significance for current photovoltaic research.


2018 ◽  
Vol 35 (4) ◽  
pp. 816-823 ◽  
Author(s):  
M. Khalid Hossain ◽  
M.F. Pervez ◽  
S. Tayyaba ◽  
M. Jalal Uddin ◽  
A.A. Mortuza ◽  
...  

Abstract Efficiency of dye-sensitized solar cell (DSSC) depends on several interrelated factors such as type and concentration of dye, type and thickness of photoelectrode and counter electrode. Optimized combination of these factors leads to a more efficient cell. This paper presents the effect of these parameters on cell efficiency. TiO2 nanoporous thin films of different thicknesses (5 μm to 25 μm) were fabricated on indium doped tin oxide (ITO) coated glass by doctor blading method and characterized by inverted microscope, stylus surface profiler and scanning electron microscope (SEM). Natural organic dye of different concentrations, extracted from turmeric, was prepared with ethanol solvent. Different combinations of dye concentrations and film thicknesses along with different types of carbon catalyst have been investigated by I-V characterization. The result shows that the cell made of a counter electrode catalyst material prepared by candle flame carbon combined with about 15 μm thick photoelectrode and 100 mg/mL dye in ethanol solvent, achieves the highest efficiency of 0.45 %, with open circuit voltage of 566 mV and short circuit current density of 1.02 mA/cm2.


2010 ◽  
Vol 297-301 ◽  
pp. 764-770
Author(s):  
Yong Woo Kim ◽  
Eun Nara Cho ◽  
Soo Chang Choi ◽  
Deug Woo Lee

M-CNTs (Multiwall Carbon Nano Tubes) can be used as an electrode, transferring electrons and heat very easily. This property helps transfer electrons created in TiO2 layer of DSSC (Dye-sensitized Solar Cell). CNTs layer with TiO2 utilized for the photocatalyst is expected to contribute to improve the efficiency of the solar cell. The Photocatalyst of TiO2 thin film was manufactured from titanium isopropoxide, ethanol, and HCl by a sol-gel process. To determine the property of TiO2 thin film with CNT, we performed to mix acid dispersed CNT in TiO2 Sol-gel and make coating membranes using sol-gel with different densities of CNT. It was found that the crystal structure changed from the anatase phase to the rutile phase having higher efficiency by XRD measure after treatment of high temperature sintering. To demonstrate the property of each sample, the transmittance of the TiO2 thin film was measured by a spectrometer and dispersion of CNT of the thin film was measured by SEM. In conclusion, the capacitance as the parameter which can affect performance of DSSC was investigated.


2018 ◽  
Vol 6 (6) ◽  
Author(s):  
Hafeez Yusuf Hafeez ◽  
Bala Ismail Adam

In this analytical approach we fabricate and characterized a Titanium Dioxide Dye sensitized solar cell using Doctor-Blade Technique. The samples were given annealing treatment at various time of 20, 30 and 40 minutes respectivelyat constant annealing temperature of 450oC. The device under test (DUT) were tested using a Kiethley 2400, source meter under A.M 1.5 (1000W/m2) illumination from a Newport class A solar simulator.The results shows that at the miscellaneous annealing time, the open circuit voltagesVoc= 0.28V, 0.30V and 0.29V, the short circuit current density Jsc=95.5µAcm-2 , 104.1µAcm-2and 105µAcm-2, the fill factor FF= 0.411, 0.448 and 0.525 and the energy conversion efficiency, η = 0.011, 0.014 and 0.016 respectively.With best results of open circuit voltage Voc=0.30, short circuit current density Jsc= 105mAcm-2, fill factor FF= 0.525 and energy conversion efficiency η= 0.016 was achieved.It was observed that the power density, Fill Factor and efficiency increases with increasewith increase in annealing time.


2008 ◽  
Vol 368-372 ◽  
pp. 1716-1719 ◽  
Author(s):  
Teen Hang Meen ◽  
Chien Jung Huang ◽  
Yin Wei Chen ◽  
Liang Wen Ji ◽  
Chien Chen Diao ◽  
...  

In this research, applications of different TiO2 electrode structures on Dye-Sensitized Solar Cell were investigated. The different TiO2 electrode structures include: (1) synthesis of TiO2 nano-particles and TiO2 film electrode by sol-gel and spin-coating method; (2) fabrication of the TiO2 film electrode by RF Sputtering; (3) fabrication of the rod TiO2 electrode by photo lithography. X-ray diffraction patterns show that the best sintering temperature of nano-TiO2 thin film is 500oC, at which TiO2 anatase phase forms best and the smallest particle-size (8-10 nm) can be obtained. Ultraviolet-visible absorption spectra reveal that the rod TiO2 electrode with TCPP sensitizer adsorbed on has the best optical absorption from 400 nm to 700 nm. The results of current-voltage analyses reveal that the solar cell with rod TiO2 electrode has higher conversion efficiency than the others. This result also provides clear evidence for the contact area between TiO2 electrode and TCPP sensitizer plays an important role on the efficiency of dye-sensitized solar cell.


2015 ◽  
Vol 1123 ◽  
pp. 325-328
Author(s):  
Irana Eka Putri ◽  
M. Leonard Sidik ◽  
Ruri Agung Wahyuono ◽  
Dyah Sawitri ◽  
Doty Dewi Risanti

High efficiency of light-to-energy conversion in dye-sensitized solar cell (DSSC) was achieved by applying anthocyanin as photosensitizer and TiO2 as photoelectrode. TiO2 anatase phase was synthesized by using co-precipitation method from TiCl3 precipitate. Anthocyanin (A) from Garcinia mangostana pericarp was combined with β-carotene (B) from Daucus carota and curcumin (C) pigments from Curcuma longa. According to UV-Vis analysis the wavelength absorptions of anthocyanin, β-carotene, and curcumin are 399 nm, 471 nm, and 470 nm, respectively. The A–B–C produced the short-circuit current density (JSC) of 77.7 μA, the open-circuit voltage (VOC) of 343.2 mV, the fill factor (FF) of 32.3, and the efficiency (η) of 0.042%. It is found that there exists a synergistic effect between anthocyanin and curcumin as indicated by broader absorption wavelengths, whilst the mixture between anthocyanin and β-carotene does not show the synergistic effect. The high efficiency of layered co-sensitization is attributed to the high adsorption capacities of curcumin in the outer layer. On the other hand, the effect can be explained on the basis of light scattering effect.


Sign in / Sign up

Export Citation Format

Share Document