scholarly journals Global Stability of a Virus Infection Model with Time Delay and Absorption

2011 ◽  
Vol 2011 ◽  
pp. 1-20
Author(s):  
Xiaohong Tian ◽  
Rui Xu

In this paper, a virus infection model with time delay and absorption is studied. By analyzing the corresponding characteristic equations, the local stability of each of feasible equilibria of the model is established. By using comparison arguments, it is shown that the infection free equilibrium is globally asymptotically stable when the basic reproduction ratio is less than unity. When the basic reproduction ratio is greater than unity, sufficient conditions are derived for the global stability of the virus-infected equilibrium. Numerical simulations are carried out to illustrate the theoretical results.

2010 ◽  
Vol 2010 ◽  
pp. 1-21 ◽  
Author(s):  
Xiaohong Tian ◽  
Rui Xu

A hepatitis B virus infection model with time delay is discussed. By analyzing the corresponding characteristic equations, the local stability of each of the feasible equilibria of the model is studied. By using comparison arguments, it is proved that if the basic reproduction ratio is less than unity, the infection-free equilibrium is globally asymptotically stable. If the basic reproduction ratio is greater than unity, by means of an iteration technique, sufficient conditions are derived for the global asymptotic stability of the virus-infected equilibrium. Numerical simulations are carried out to illustrate the theoretical results.


2012 ◽  
Vol 05 (03) ◽  
pp. 1260012 ◽  
Author(s):  
RUI XU

In this paper, an HIV-1 infection model with absorption, saturation infection and an intracellular delay accounting for the time between viral entry into a target cell and the production of new virus particles is investigated. By analyzing the characteristic equations, the local stability of an infection-free equilibrium and a chronic-infection equilibrium of the model is established. By using suitable Lyapunov functionals and LaSalle's invariance principle, it is proved that if the basic reproduction ratio is less than unity, the infection-free equilibrium is globally asymptotically stable; and if the basic reproduction ratio is greater than unity, sufficient condition is derived for the global stability of the chronic-infection equilibrium.


2016 ◽  
Vol 09 (06) ◽  
pp. 1650082 ◽  
Author(s):  
Lili Wang ◽  
Rui Xu

In this paper, an SEIR epidemic model with vaccination is formulated. The results of our mathematical analysis indicate that the basic reproduction number plays an important role in studying the dynamics of the system. If the basic reproduction number is less than unity, it is shown that the disease-free equilibrium is globally asymptotically stable by comparison arguments. If it is greater than unity, the system is permanent and there is a unique endemic equilibrium. In this case, sufficient conditions are established to guarantee the global stability of the endemic equilibrium by the theory of the compound matrices. Numerical simulations are presented to illustrate the main results.


2011 ◽  
Vol 2011 ◽  
pp. 1-13 ◽  
Author(s):  
Yunfei Li ◽  
Rui Xu ◽  
Zhe Li ◽  
Shuxue Mao

A delayed HIV-1 infection model with CTL immune response is investigated. By using suitable Lyapunov functionals, it is proved that the infection-free equilibrium is globally asymptotically stable if the basic reproduction ratio for viral infection is less than or equal to unity; if the basic reproduction ratio for CTL immune response is less than or equal to unity and the basic reproduction ratio for viral infection is greater than unity, the CTL-inactivated infection equilibrium is globally asymptotically stable; if the basic reproduction ratio for CTL immune response is greater than unity, the CTL-activated infection equilibrium is globally asymptotically stable.


2013 ◽  
Vol 791-793 ◽  
pp. 1314-1317
Author(s):  
Wei Juan Pang ◽  
Zhi Xing Hu ◽  
Fu Cheng Liao

This paper investigates the global stability of a viral infection model of HBV infection of hepatocytes with saturated infection rate and intracellular delay. we obtain if the basic reproductive number is less than or equal to one, the infection-free equilibrium is globally asymptotically stable. If its greater than one, we obtain the sufficient conditions for the global stability of the infected equilibrium.


2013 ◽  
Vol 2013 ◽  
pp. 1-12
Author(s):  
Haibin Wang ◽  
Rui Xu

An HIV-1 infection model with latently infected cells and delayed immune response is investigated. By analyzing the corresponding characteristic equations, the local stability of each of feasible equilibria is established and the existence of Hopf bifurcations at the CTL-activated infection equilibrium is also studied. By means of suitable Lyapunov functionals and LaSalle’s invariance principle, it is proved that the infection-free equilibrium is globally asymptotically stable if the basic reproduction ratio for viral infectionR0≤1; if the basic reproduction ratio for viral infectionR0>1and the basic reproduction ratio for CTL immune responseR1≤1, the CTL-inactivated infection equilibrium is globally asymptotically stable. If the basic reproduction ratio for CTL immune responseR1>1, the global stability of the CTL-activated infection equilibrium is also derived when the time delayτ=0. Numerical simulations are carried out to illustrate the main results.


2017 ◽  
Vol 27 (10) ◽  
pp. 1750150 ◽  
Author(s):  
Yu Yang ◽  
Tonghua Zhang ◽  
Yancong Xu ◽  
Jinling Zhou

In this paper, a delayed virus infection model with cell-to-cell transmission and CTL immune response is investigated. In the model, time delay is incorporated into the CTL response. By constructing Lyapunov functionals, global dynamical properties of the two boundary equilibria are established. Our results show that time delay in the CTL response process may lead to sustained oscillation. To further investigate the nature of the oscillation, we apply the method of multiple time scales to calculate the normal form on the center manifold of the model. At the end of the paper, numerical simulations are carried out, which support our theoretical results.


Sign in / Sign up

Export Citation Format

Share Document