scholarly journals TGFβ-signaling in Squamous Cell Carcinoma Occurring in Recessive Dystrophic Epidermolysis Bullosa

2011 ◽  
Vol 34 (6) ◽  
pp. 339-353 ◽  
Author(s):  
Julia Knaup ◽  
Christina Gruber ◽  
Barbara Krammer ◽  
Verena Ziegler ◽  
Johann Bauer ◽  
...  

Background: Recessive dystrophic epidermolysis bullosa (RDEB) is a hereditary skin disorder characterized by mechanical fragility of the skin, resulting in blistering and chronic wounds. The causative mutations lie in the COL7A1 gene. Patients suffering from RDEB have a high risk to develop aggressive, rapidly metastasizing squamous cell carcinomas (SCCs). Cutaneous RDEB SCCs develop preferentially in long-term skin wounds or cutaneous scars. Albeit being well differentiated, they show a more aggressive behavior than UV-induced SCCs. These findings suggest other contributing factors in SCC tumorigenesis in RDEB.Objective: To analyze factors contributing to RDEB tumorigenesis, we conducted a comprehensive gene expression study comparing a non-malignant RDEB (RDEB-CL) to a RDEB SCC cell line (SCCRDEB4) to achieve an overview on the changes of the gene expression levels in RDEB related skin cancer.Methods: We applied cDNA arrays comprising 9738 human expressed sequence tags (EST) with various functions. Selected results were verified by Real-time RT PCR.Results: Large-scale gene expression analysis revealed changes in the expression level of transforming growth factor β1 (TGFβ1) and several genes under the control of TGFβ for RDEB and SCCRDEB4 cell lines. Even untransformed RDEB keratinocytes show elevated levels of TGFβ1.Conclusion: Our findings demonstrate a prominent role of TGFβ-signaling in RDEB-related skin cancer. Once activated, TGFβ signaling either in response to wounding or in order to influence type VII collagen expression levels could facilitate cancer development and progression. Moreover, TGFβ signaling might also represent a potentially useful therapeutic target in this disease.

2021 ◽  
Vol 22 (10) ◽  
pp. 5104
Author(s):  
Grace Tartaglia ◽  
Qingqing Cao ◽  
Zachary M. Padron ◽  
Andrew P. South

Recessive Dystrophic Epidermolysis Bullosa (RDEB) is a devastating skin blistering disease caused by mutations in the gene encoding type VII collagen (C7), leading to epidermal fragility, trauma-induced blistering, and long term, hard-to-heal wounds. Fibrosis develops rapidly in RDEB skin and contributes to both chronic wounds, which emerge after cycles of repetitive wound and scar formation, and squamous cell carcinoma—the single biggest cause of death in this patient group. The molecular pathways disrupted in a broad spectrum of fibrotic disease are also disrupted in RDEB, and squamous cell carcinomas arising in RDEB are thus far molecularly indistinct from other sub-types of aggressive squamous cell carcinoma (SCC). Collectively these data demonstrate RDEB is a model for understanding the molecular basis of both fibrosis and rapidly developing aggressive cancer. A number of studies have shown that RDEB pathogenesis is driven by a radical change in extracellular matrix (ECM) composition and increased transforming growth factor-beta (TGFβ) signaling that is a direct result of C7 loss-of-function in dermal fibroblasts. However, the exact mechanism of how C7 loss results in extensive fibrosis is unclear, particularly how TGFβ signaling is activated and then sustained through complex networks of cell-cell interaction not limited to the traditional fibrotic protagonist, the dermal fibroblast. Continued study of this rare disease will likely yield paradigms relevant to more common pathologies.


2020 ◽  
Vol 22 (1) ◽  
pp. 245
Author(s):  
Avina Rami ◽  
Łukasz Łaczmański ◽  
Jagoda Jacków-Nowicka ◽  
Joanna Jacków

The early onset and rapid progression of cutaneous squamous cell carcinoma (cSCC) leads to high mortality rates in individuals with recessive dystrophic epidermolysis bullosa (RDEB). Currently, the molecular mechanisms underlying cSCC development in RDEB are not well understood and there are limited therapeutic options. RDEB-cSCC arises through the accumulation of genetic mutations; however, previous work analyzing gene expression profiles have not been able to explain its aggressive nature. Therefore, we generated a model to study RDEB-cSCC development using cellular reprograming and re-differentiation technology. We compared RDEB-cSCC to cSCC that were first reprogrammed into induced pluripotent stem cells (RDEB-cSCC-iPSC) and then differentiated back to keratinocytes (RDEB-cSCC-iKC). The RDEB-cSCC-iKC cell population had reduced proliferative capacities in vitro and in vivo, suggesting that reprogramming and re-differentiation leads to functional changes. Finally, we performed RNA-seq analysis for RDEB-cSCC, RDEB-cSCC-iPSC, and RDEB-cSCC-iKC and identified different gene expression signatures between these cell populations. Taken together, this cell culture model offers a valuable tool to study cSCC and provides a novel way to identify potential therapeutic targets for RDEB-cSCC.


Sign in / Sign up

Export Citation Format

Share Document