scholarly journals TheN×D-BMAP/G/1 Queueing Model: Queue Contents and Delay Analysis

2011 ◽  
Vol 2011 ◽  
pp. 1-31 ◽  
Author(s):  
Bart Steyaert ◽  
Joris Walraevens ◽  
Dieter Fiems ◽  
Herwig Bruneel

We consider a single-server discrete-time queueing system with N sources, where each source is modelled as a correlated Markovian customer arrival process, and the customer service times are generally distributed. We focus on the analysis of the number of customers in the queue, the amount of work in the queue, and the customer delay. For each of these quantities, we will derive an expression for their steady-state probability generating function, and from these results, we derive closed-form expressions for key performance measures such as their mean value, variance, and tail distribution. A lot of emphasis is put on finding closed-form expressions for these quantities that reduce all numerical calculations to an absolute minimum.

1995 ◽  
Vol 8 (2) ◽  
pp. 151-176 ◽  
Author(s):  
Attahiru Sule Alfa ◽  
K. Laurie Dolhun ◽  
S. Chakravarthy

We consider a single-server discrete queueing system in which arrivals occur according to a Markovian arrival process. Service is provided in groups of size no more than M customers. The service times are assumed to follow a discrete phase type distribution, whose representation may depend on the group size. Under a probabilistic service rule, which depends on the number of customers waiting in the queue, this system is studied as a Markov process. This type of queueing system is encountered in the operations of an automatic storage retrieval system. The steady-state probability vector is shown to be of (modified) matrix-geometric type. Efficient algorithmic procedures for the computation of the rate matrix, steady-state probability vector, and some important system performance measures are developed. The steady-state waiting time distribution is derived explicitly. Some numerical examples are presented.


Author(s):  
R. Kalayanaraman ◽  
S. Sumathy

A single server infinite capacity queuing system with Poisson arrival process along with Bernoulli feedback decision process is considered wherein the server provides two types of service. The first essential service is rendered one by one to all the customers and second optional service is given in batches of fixed size b. For this model the steady state probability generating function for the queue length process has been obtained and average queue length has been found explicitly. Results for particular cases are obtained and some numerical results are presented to test the feasibility of the queuing model.


2019 ◽  
Vol 53 (5) ◽  
pp. 1861-1876 ◽  
Author(s):  
Sapana Sharma ◽  
Rakesh Kumar ◽  
Sherif Ibrahim Ammar

In many practical queuing situations reneging and balking can only occur if the number of customers in the system is greater than a certain threshold value. Therefore, in this paper we study a single server Markovian queuing model having customers’ impatience (balking and reneging) with threshold, and retention of reneging customers. The transient analysis of the model is performed by using probability generating function technique. The expressions for the mean and variance of the number of customers in the system are obtained and a numerical example is also provided. Further the steady-state solution of the model is obtained. Finally, some important queuing models are derived as the special cases of this model.


Author(s):  
Yang Woo Shin ◽  
Chareles E. M. Pearce

AbstractWe treat a single-server vacation queue with queue-length dependent vacation schedules. This subsumes the single-server vacation queue with exhaustive service discipline and the vacation queue with Bernoulli schedule as special cases. The lengths of vacation times depend on the number of customers in the system at the beginning of a vacation. The arrival process is a batch-Markovian arrival process (BMAP). We derive the queue-length distribution at departure epochs. By using a semi-Markov process technique, we obtain the Laplace-Stieltjes transform of the transient queue-length distribution at an arbitrary time point and its limiting distribution


2013 ◽  
Vol 2013 ◽  
pp. 1-14 ◽  
Author(s):  
A. D. Banik

We consider a finite-buffer single server queueing system with queue-length dependent vacations where arrivals occur according to a batch Markovian arrival process (BMAP). The service discipline is P-limited service, also called E-limited with limit variation (ELV) where the server serves until either the system is emptied or a randomly chosen limit of L customers has been served. Depending on the number of customers present in the system, the server will monitor his vacation times. Queue-length distributions at various epochs such as before, arrival, arbitrary and after, departure have been obtained. Several other service disciplines like Bernoulli scheduling, nonexhaustive service, and E-limited service can be treated as special cases of the P-limited service. Finally, the total expected cost function per unit time is considered to determine locally optimal values N* of N or a maximum limit L^* of L^ as the number of customers served during a service period at a minimum cost.


2017 ◽  
Vol 27 (1) ◽  
pp. 119-131 ◽  
Author(s):  
Arianna Brugno ◽  
Ciro D’Apice ◽  
Alexander Dudin ◽  
Rosanna Manzo

Abstract A novel customer batch service discipline for a single server queue is introduced and analyzed. Service to customers is offered in batches of a certain size. If the number of customers in the system at the service completion moment is less than this size, the server does not start the next service until the number of customers in the system reaches this size or a random limitation of the idle time of the server expires, whichever occurs first. Customers arrive according to a Markovian arrival process. An individual customer’s service time has a phase-type distribution. The service time of a batch is defined as the maximum of the individual service times of the customers which form the batch. The dynamics of such a system are described by a multi-dimensional Markov chain. An ergodicity condition for this Markov chain is derived, a stationary probability distribution of the states is computed, and formulas for the main performance measures of the system are provided. The Laplace–Stieltjes transform of the waiting time is obtained. Results are numerically illustrated.


Entropy ◽  
2019 ◽  
Vol 21 (3) ◽  
pp. 259 ◽  
Author(s):  
Messaoud Bounkhel ◽  
Lotfi Tadj ◽  
Ramdane Hedjar

A flexible single-server queueing system is considered in this paper. The server adapts to the system size by using a strategy where the service provided can be either single or bulk depending on some threshold level c. If the number of customers in the system is less than c, then the server provides service to one customer at a time. If the number of customers in the system is greater than or equal to c, then the server provides service to a group of c customers. The service times are exponential and the service rates of single and bulk service are different. While providing service to either a single or a group of customers, the server may break down and goes through a repair phase. The breakdowns follow a Poisson distribution and the breakdown rates during single and bulk service are different. Also, repair times are exponential and repair rates during single and bulk service are different. The probability generating function and linear operator approaches are used to derive the system size steady-state probabilities.


1978 ◽  
Vol 15 (03) ◽  
pp. 602-609 ◽  
Author(s):  
Sheldon M. Ross

One of the major difficulties in attempting to apply known queueing theory results to real problems is that almost always these results assume a time-stationary Poisson arrival process, whereas in practice the actual process is almost invariably non-stationary. In this paper we consider single-server infinite-capacity queueing models in which the arrival process is a non-stationary process with an intensity function ∧(t), t ≧ 0, which is itself a random process. We suppose that the average value of the intensity function exists and is equal to some constant, call it λ, with probability 1. We make a conjecture to the effect that ‘the closer {∧(t), t ≧ 0} is to the stationary Poisson process with rate λ ' then the smaller is the average customer delay, and then we verify the conjecture in the special case where the arrival process is an interrupted Poisson process.


1992 ◽  
Vol 29 (03) ◽  
pp. 699-712 ◽  
Author(s):  
Sid Browne ◽  
Karl Sigman

We study two FIFO single-server queueing models in which both the arrival and service processes are modulated by the amount of work in the system. In the first model, the nth customer's service time, Sn , depends upon their delay, Dn , in a general Markovian way and the arrival process is a non-stationary Poisson process (NSPP) modulated by work, that is, with an intensity that is a general deterministic function g of work in system V(t). Some examples are provided. In our second model, the arrivals once again form a work-modulated NSPP, but, each customer brings a job consisting of an amount of work to be processed that is i.i.d. and the service rate is a general deterministic function r of work. This model can be viewed as a storage (dam) model (Brockwell et al. (1982)), but, unlike previous related literature, (where the input is assumed work-independent and stationary), we allow a work-modulated NSPP. Our approach involves an elementary use of Foster's criterion (via Tweedie (1976)) and in addition to obtaining new results, we obtain new and simplified proofs of stability for some known models. Using further criteria of Tweedie, we establish sufficient conditions for the steady-state distribution of customer delay and sojourn time to have finite moments.


2005 ◽  
Vol 2005 (3) ◽  
pp. 353-373 ◽  
Author(s):  
U. C. Gupta ◽  
A. D. Banik ◽  
S. S. Pathak

We consider a finite-buffer single-server queue with Markovian arrival process (MAP) where the server serves a limited number of customers, and when the limit is reached it goes on vacation. Both single- and multiple-vacation policies are analyzed and the queue length distributions at various epochs, such as pre-arrival, arbitrary, departure, have been obtained. The effect of certain model parameters on some important performance measures, like probability of loss, mean queue lengths, mean waiting time, is discussed. The model can be applied in computer communication and networking, for example, performance analysis of token passing ring of LAN and SVC (switched virtual connection) of ATM.


Sign in / Sign up

Export Citation Format

Share Document