scholarly journals Preparation and Antibacterial Activity of Mixed Ligand Complexes of Co(II), Ni(II), Cu(II) and Cd(II) Derived from 1-Phenylazo-2-naphthol and Salicylaldehyde

2011 ◽  
Vol 8 (1) ◽  
pp. 43-48
Author(s):  
S. A. I. Sharif ◽  
A. N. El-Tajoury ◽  
A. A. Elamari

The mixed ligand complexes of Co(II), Ni(II), Cu(II) and Cd(II) have been synthesized by using 1-phenylazo-2-naphthol as primary ligand and salicylaldehyde as secondary ligand. All the prepared complexes were identified and confirmed by elemental analyses (C, H and N), molar conductance measurements, infrared, electronic absorption and electron paramagnetic resonance. The elemental analysis data suggest that the stoichiometry of the complexes to be 1:1:1[M: L1: L2] ratio. The molar conductance measurements of the complexes indicate their non-electrolytic nature. The infrared spectral data showed the coordination sites of the free ligand with the central metal ion. The electronic absorption spectral data revealed the existence of an octahedral geometry for Co(II) and Cd(II) complexes and a square planar geometry for Ni(II) and Cu(II) complexes. The electron paramagnetic resonance spectra of the Co(II) and Cu(II) complexes showed the existence a paramagnetic phenomenon and supported their geometrical structures which confirmed by the electronic absorption spectra. The ligands and mixed ligand complexes have been tested on antibacterial activity against three strains of pathogenic bacteria such asEscherichia coli, Staphylococcus aureusandPseudomonas aeruginosa

2011 ◽  
Vol 8 (1) ◽  
pp. 19-24
Author(s):  
F. I. El-Moshaty ◽  
R. S. El-Zweay ◽  
M. M. El-Ajaily ◽  
A. M. Jerboa

The formation of mixed ligand complex of Mn(II) with catechol (L1) and 2-aminopyridine (L2) was determined by elemental analyses (C, H and N), molar conductance measurement, thermogravimetric analysis, infrared, electronic and electron paramagnetic resonance spectroscopies. The elemental analysis data show the formation of 1:1:1 [M: L1: L2] complex. The molar conductance measurement shows a non-electrolyte nature. The thermogravimetric analysis data of the complex display the existence of hydrated and coordinated water molecules. The infrared spectral data exhibit the coordination sites that are through -OH,-C=N and –NH2groups. The electronic spectral data display the electronic transitions of the ligands and suggest an octahedral structure for the complex. The electron paramagnetic resonance spectrum of the complex reveals the existence of paramagnetic phenomena and supports its geometrical structure. Seed germination and root length of grass were also assayed under the effect of MnCl2.4H2O, catechol, 2-aminopyridine and its complex. Mn(II) salt was the most effective on germination than its complex which possess the high test effect on root length, while the ligands are the least active of all.


2007 ◽  
Vol 4 (4) ◽  
pp. 461-466 ◽  
Author(s):  
M. M. El-Ajaily ◽  
F. A. Abdlseed ◽  
S. Ben-Gweirif

The Schiff base complexes derived from Salicylaldehyde and o- pheneylenediamine have been prepared and characterized using several physical techniques, in terms; elemental analysis, molar conductance measurements, thermogravimetric analysis, magnetic moment measurements, infrared, electronic and electron paramagnetic resonance spectra. The elemental analysis data exhibit the formation of 1:1[M: L] complexes. The molar conductance values reveal a non- electrolytic nature. The thermogravimetric analysis data of Cr(VI) complex show the presence of water molecules. The obtained magnetic moment values exhibit the existence of three unpaired electrons in the Cr(III) complex and a diamagnetic phenomenon for the other three complexes. The infrared spectral data display the coordination behavior of the Schiff base towards Cr(VI), Cr(III), Pb(II)) and TiO(IV) ions. The electronic absorption spectra of the Schiff base and its complexes show π→π* (phenyl ring), n→π* (HC=N) and the expected geometrical structure for the prepared complexes. The electron paramagnetic resonance spectral data satisfy the presence of a paramagnetic phenomenon and support the expected geometrical structure of Cr(III) complex. The Schiff base and its new complexes were tested for antibacterial activity against gram positive bacteria; Staphylococcus aureus and gram negative bacteria; Salmonella, Escherichia coli including the resistance bacteria Pseudomonas aeruginosa.


Sign in / Sign up

Export Citation Format

Share Document