scholarly journals Solving Famous Nonlinear Coupled Equations with Parameters Derivative by Homotopy Analysis Method

2011 ◽  
Vol 2011 ◽  
pp. 1-15 ◽  
Author(s):  
Sohrab Effati ◽  
Hassan Saberi Nik ◽  
Reza Buzhabadi

The homotopy analysis method (HAM) is employed to obtain symbolic approximate solutions for nonlinear coupled equations with parameters derivative. These nonlinear coupled equations with parameters derivative contain many important mathematical physics equations and reaction diffusion equations. By choosing different values of the parameters in general formal numerical solutions, as a result, a very rapidly convergent series solution is obtained. The efficiency and accuracy of the method are verified by using two famous examples: coupled Burgers and mKdV equations. The obtained results show that the homotopy perturbation method is a special case of homotopy analysis method.

2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Shahid S. Siddiqi ◽  
Muzammal Iftikhar

The aim of this paper is to use the homotopy analysis method (HAM), an approximating technique for solving linear and nonlinear higher order boundary value problems. Using HAM, approximate solutions of seventh-, eighth-, and tenth-order boundary value problems are developed. This approach provides the solution in terms of a convergent series. Approximate results are given for several examples to illustrate the implementation and accuracy of the method. The results obtained from this method are compared with the exact solutions and other methods (Akram and Rehman (2013), Farajeyan and Maleki (2012), Geng and Li (2009), Golbabai and Javidi (2007), He (2007), Inc and Evans (2004), Lamnii et al. (2008), Siddiqi and Akram (2007), Siddiqi et al. (2012), Siddiqi et al. (2009), Siddiqi and Iftikhar (2013), Siddiqi and Twizell (1996), Siddiqi and Twizell (1998), Torvattanabun and Koonprasert (2010), and Kasi Viswanadham and Raju (2012)) revealing that the present method is more accurate.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Najeeb Alam Khan ◽  
Muhammad Jamil ◽  
Asmat Ara

We construct the approximate solutions of the time-fractional Schrödinger equations, with zero and nonzero trapping potential, by homotopy analysis method (HAM). The fractional derivatives, in the Caputo sense, are used. The method is capable of reducing the size of calculations and handles nonlinear-coupled equations in a direct manner. The results show that HAM is more promising, convenient, efficient and less computational than differential transform method (DTM), and easy to apply in spaces of higher dimensions as well.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Seydi Battal Gazi Karakoç ◽  
Aytekin Eryılmaz ◽  
Musa Başbük

Numerical solutions of linear and nonlinear integrodifferential-difference equations are presented using homotopy analysis method. The aim of the paper is to present an efficient numerical procedure for solving linear and nonlinear integrodifferential-difference equations. The reliability and efficiency of the proposed scheme are demonstrated by some numerical experiments and performed on the computer algebraic system.


2011 ◽  
Vol 2011 ◽  
pp. 1-12 ◽  
Author(s):  
Hadi Hosseini Fadravi ◽  
Hassan Saberi Nik ◽  
Reza Buzhabadi

The analytical solution of the foam drainage equation with time- and space-fractional derivatives was derived by means of the homotopy analysis method (HAM). The fractional derivatives are described in the Caputo sense. Some examples are given and comparisons are made; the comparisons show that the homotopy analysis method is very effective and convenient. By choosing different values of the parameters in general formal numerical solutions, as a result, a very rapidly convergent series solution is obtained.


2015 ◽  
Vol 10 (3) ◽  
pp. 2825-2833
Author(s):  
Achala Nargund ◽  
R Madhusudhan ◽  
S B Sathyanarayana

In this paper, Homotopy analysis method is applied to the nonlinear coupleddifferential equations of classical Boussinesq system. We have applied Homotopy analysis method (HAM) for the application problems in [1, 2, 3, 4]. We have also plotted Domb-Sykes plot for the region of convergence. We have applied Pade for the HAM series to identify the singularity and reflect it in the graph. The HAM is a analytical technique which is used to solve non-linear problems to generate a convergent series. HAM gives complete freedom to choose the initial approximation of the solution, it is the auxiliary parameter h which gives us a convenient way to guarantee the convergence of homotopy series solution. It seems that moreartificial degrees of freedom implies larger possibility to gain better approximations by HAM.


2010 ◽  
Vol 65 (11) ◽  
pp. 935-949 ◽  
Author(s):  
Mehdi Dehghan ◽  
Jalil Manafian ◽  
Abbas Saadatmandi

In this paper, the homotopy analysis method is applied to solve linear fractional problems. Based on this method, a scheme is developed to obtain approximation solution of fractional wave, Burgers, Korteweg-de Vries (KdV), KdV-Burgers, and Klein-Gordon equations with initial conditions, which are introduced by replacing some integer-order time derivatives by fractional derivatives. The fractional derivatives are described in the Caputo sense. So the homotopy analysis method for partial differential equations of integer order is directly extended to derive explicit and numerical solutions of the fractional partial differential equations. The solutions are calculated in the form of convergent series with easily computable components. The results of applying this procedure to the studied cases show the high accuracy and efficiency of the new technique.


Open Physics ◽  
2018 ◽  
Vol 16 (1) ◽  
pp. 143-148 ◽  
Author(s):  
Emran Khoshrouye Ghiasi ◽  
Reza Saleh

AbstractIn this paper, homotopy analysis method (HAM) and variational iteration method (VIM) are utilized to derive the approximate solutions of the Tricomi equation. Afterwards, the HAM is optimized to accelerate the convergence of the series solution by minimizing its square residual error at any order of the approximation. It is found that effect of the optimal values of auxiliary parameter on the convergence of the series solution is not negligible. Furthermore, the present results are found to agree well with those obtained through a closed-form equation available in the literature. To conclude, it is seen that the two are effective to achieve the solution of the partial differential equations.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Shaheed N. Huseen ◽  
Said R. Grace

A modifiedq-homotopy analysis method (mq-HAM) was proposed for solvingnth-order nonlinear differential equations. This method improves the convergence of the series solution in thenHAM which was proposed in (see Hassan and El-Tawil 2011, 2012). The proposed method provides an approximate solution by rewriting thenth-order nonlinear differential equation in the form ofnfirst-order differential equations. The solution of thesendifferential equations is obtained as a power series solution. This scheme is tested on two nonlinear exactly solvable differential equations. The results demonstrate the reliability and efficiency of the algorithm developed.


Sign in / Sign up

Export Citation Format

Share Document