foam drainage
Recently Published Documents


TOTAL DOCUMENTS

151
(FIVE YEARS 28)

H-INDEX

27
(FIVE YEARS 2)

2021 ◽  
Vol 30 ◽  
pp. 104844
Author(s):  
Wen-Hui Zhu ◽  
Arash Pashrashid ◽  
Waleed Adel ◽  
Hatira Gunerhan ◽  
KottakkaranSooppy Nisar ◽  
...  

Gels ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 179
Author(s):  
Youjie Sheng ◽  
Canbin Yan ◽  
Yang Li ◽  
Yunchuan Peng ◽  
Li Ma ◽  
...  

The foams stabilized by nanoparticles (NPs), water-soluble polymers, and surfactants have potential application prospects in the development of new, environmentally friendly firefighting foams. In the present study, a gel foam containing a water-soluble polymer (xanthan gum, XG), hydrophilic silica NPs, hydrocarbon surfactant (SDS), and fluorocarbon surfactant (FS-50) were prepared. The surface activity, conductivity, viscosity, and foaming ability of foam dispersions were characterized. The gel foam stability under a radiation heat source and temperature distribution in the vertical foam layer were evaluated systematically. The results show that the addition of NPs and XG has a significant effect on the foaming ability, viscosity and foam thermal stability, but has a very subtle effect on the conductivity and surface activity. The foaming ability of the FS-50/SDS solution was enhanced by the addition of NPs, but decreased with increasing the XG concentration. The thermal stability of the foams stabilized by SDS/FS-50/NPs/XG increased with the addition of NPs and increasing XG concentration. Foam drainage and coarsening were significantly decelerated by the addition of NPs and XG. The slower foam drainage and coarsening are the main reason for the intensified foam thermal stability. The results obtained from this study can provide guidance for developing new firefighting foams.


2021 ◽  
Vol 44 (9) ◽  
Author(s):  
Yaw Akyampon Boakye-Ansah ◽  
Paul Grassia

Abstract The foam drainage equation and Richards equation are transport equations for foams and soils, respectively. Each reduces to a nonlinear diffusion equation in the early stage of infiltration during which time, flow is predominantly capillary driven, hence is effectively capillary imbibition. Indeed such equations arise quite generally during imbibition processes in porous media. New early-time solutions based on the van Genuchten relative diffusivity function for soils are found and compared with the same for drainage in foams. The moisture profiles which develop when delivering a known flux into these various porous materials are sought. Solutions are found using the principle of self-similarity. Singular profiles that terminate abruptly are obtained for soils, a contrast with solutions obtained for node-dominated foam drainage which are known from the literature (the governing equation being now linear is analogous to the linear equation for heat transfer). As time evolves, the moisture that develops at the top boundary when a known flux is delivered is greater in soils than in foams and is greater still in loamy soils than in sandstones. Similarities and differences between the various solutions for nonlinear and linear diffusion are highlighted. Graphic abstract


Sign in / Sign up

Export Citation Format

Share Document