scholarly journals Tissue Expression and Actin Binding of a Novel N-Terminal Utrophin Isoform

2011 ◽  
Vol 2011 ◽  
pp. 1-18
Author(s):  
Richard A. Zuellig ◽  
Beat C. Bornhauser ◽  
Ralf Amstutz ◽  
Bruno Constantin ◽  
Marcus C. Schaub

Utrophin and dystrophin present two large proteins that link the intracellular actin cytoskeleton to the extracellular matrix via the C-terminal-associated protein complex. Here we describe a novel short N-terminal isoform of utrophin and its protein product in various rat tissues (N-utro, 62 kDa, amino acids 1–539, comprising the actin-binding domain plus the first two spectrin repeats). Using different N-terminal recombinant utrophin fragments, we show that actin binding exhibits pronounced negative cooperativity (affinity constantsK1=∼5×106andK2=∼1×105 M-1) and is Ca2+-insensitive. Expression of the different fragments in COS7 cells and in myotubes indicates that the actin-binding domain alone binds exlusively to actin filaments. The recombinant N-utro analogue binds in vitro to actin and in the cells associates to the membranes. The results indicate that N-utro may be responsible for the anchoring of the cortical actin cytoskeleton to the membranes in muscle and other tissues.

2002 ◽  
Vol 115 (15) ◽  
pp. 3207-3222 ◽  
Author(s):  
Yen-Yi Zhen ◽  
Thorsten Libotte ◽  
Martina Munck ◽  
Angelika A. Noegel ◽  
Elena Korenbaum

NUANCE (NUcleus and ActiN Connecting Element) was identified as a novel protein with an α-actinin-like actin-binding domain. A human 21.8 kb cDNA of NUANCE spreads over 373 kb on chromosome 14q22.1-q22.3. The cDNA sequence predicts a 796 kDa protein with an N-terminal actin-binding domain, a central coiled-coil rod domain and a predicted C-terminal transmembrane domain. High levels of NUANCE mRNA were detected in the kidney, liver,stomach, placenta, spleen, lymphatic nodes and peripheral blood lymphocytes. At the subcellular level NUANCE is present predominantly at the outer nuclear membrane and in the nucleoplasm. Domain analysis shows that the actin-binding domain binds to Factin in vitro and colocalizes with the actin cytoskeleton in vivo as a GFP-fusion protein. The C-terminal transmembrane domain is responsible for the targeting the nuclear envelope. Thus, NUANCE is the firstα-actinin-related protein that has the potential to link the microfilament system with the nucleus.


2006 ◽  
Vol 17 (11) ◽  
pp. 4720-4735 ◽  
Author(s):  
Alistair N. Hume ◽  
Abul K. Tarafder ◽  
José S. Ramalho ◽  
Elena V. Sviderskaya ◽  
Miguel C. Seabra

Melanophilin (Mlph) regulates retention of melanosomes at the peripheral actin cytoskeleton of melanocytes, a process essential for normal mammalian pigmentation. Mlph is proposed to be a modular protein binding the melanosome-associated protein Rab27a, Myosin Va (MyoVa), actin, and microtubule end-binding protein (EB1), via distinct N-terminal Rab27a-binding domain (R27BD), medial MyoVa-binding domain (MBD), and C-terminal actin-binding domain (ABD), respectively. We developed a novel melanosome transport assay using a Mlph-null cell line to study formation of the active Rab27a:Mlph:MyoVa complex. Recruitment of MyoVa to melanosomes correlated with rescue of melanosome transport and required intact R27BD together with MBD exon F–binding region (EFBD) and unexpectedly a potential coiled-coil forming sequence within ABD. In vitro binding studies indicate that the coiled-coil region enhances binding of MyoVa by Mlph MBD. Other regions of Mlph reported to interact with MyoVa globular tail, actin, or EB1 are not essential for melanosome transport rescue. The strict correlation between melanosomal MyoVa recruitment and rescue of melanosome distribution suggests that stable interaction with Mlph and MyoVa activation are nondissociable events. Our results highlight the importance of the coiled-coil region together with R27BD and EFBD regions of Mlph in the formation of the active melanosomal Rab27a-Mlph-MyoVa complex.


1999 ◽  
Vol 147 (6) ◽  
pp. 1275-1286 ◽  
Author(s):  
Conrad L. Leung ◽  
Dongming Sun ◽  
Min Zheng ◽  
David R. Knowles ◽  
Ronald K.H. Liem

We cloned and characterized a full-length cDNA of mouse actin cross-linking family 7 (mACF7) by sequential rapid amplification of cDNA ends–PCR. The completed mACF7 cDNA is 17 kb and codes for a 608-kD protein. The closest relative of mACF7 is the Drosophila protein Kakapo, which shares similar architecture with mACF7. mACF7 contains a putative actin-binding domain and a plakin-like domain that are highly homologous to dystonin (BPAG1-n) at its NH2 terminus. However, unlike dystonin, mACF7 does not contain a coiled–coil rod domain; instead, the rod domain of mACF7 is made up of 23 dystrophin-like spectrin repeats. At its COOH terminus, mACF7 contains two putative EF-hand calcium-binding motifs and a segment homologous to the growth arrest–specific protein, Gas2. In this paper, we demonstrate that the NH2-terminal actin-binding domain of mACF7 is functional both in vivo and in vitro. More importantly, we found that the COOH-terminal domain of mACF7 interacts with and stabilizes microtubules. In transfected cells full-length mACF7 can associate not only with actin but also with microtubules. Hence, we suggest a modified name: MACF (microtubule actin cross-linking factor). The properties of MACF are consistent with the observation that mutations in kakapo cause disorganization of microtubules in epidermal muscle attachment cells and some sensory neurons.


Cytoskeleton ◽  
2014 ◽  
Vol 71 (5) ◽  
pp. 311-327 ◽  
Author(s):  
Julia Dyachok ◽  
J. Alan Sparks ◽  
Fuqi Liao ◽  
Yuh-Shuh Wang ◽  
Elison B. Blancaflor

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Hanshuang Shao ◽  
Bentley Wingert ◽  
Astrid Weins ◽  
Martin R. Pollak ◽  
Carlos Camacho ◽  
...  

Abstract Natural mutations such as lysine 255 to glutamic acid (K to E), threonine 259 to isoleucine (T to I) and serine 262 to proline (S to P) that occur within the actin binding domain of alpha-actinin-4 (ACTN4) cause an autosomal dominant form of focal segmental glomerulosclerosis (FSGS) in affected humans. This appears due to elevated actin binding propensity in podocytes resulting in a ‘frozen’ cytoskeleton. What is challenging is how this cellular behavior would be compatible with other cell functions that rely on cytoskeleton plasticity. Our previous finding revealed that wild type ACTN4 can be phosphorylated at tyrosine 4 and 31 upon stimulation by epidermal growth factor (EGF) to reduce the binding to actin cytoskeleton. We queried whether the elevated actin binding activity of FSGS mutants can be downregulated by EGF-mediated phosphorylation, to discern a mechanism by which the actin-cytoskeleton can be released in FSGS. In this manuscript, we first constructed variants with Y4/31E to mimic the phosphorylation at tyrosines 4 and 31 based on earlier modeling simulations that predicted that this would bury the actin binding domains and lead to a decrease in actin binding activity. We found that Y4/31E significantly reduced the actin binding activity of K255E, T259I and S262P, dramatically preventing them from aggregating in, and inhibiting motility of, podocytes, fibroblasts and melanoma cells. A putative kinase target site at Y265 in the actin binding domain was also generated as a phosphomimetic ACTN4 Y265E that demonstrated even greater binding to actin filaments than K255E and the other FSGS mutants. That the tyrosine kinase regulation of FSGS mutation binding to actin filaments can occur in cells was shown by phosphorylation on Y4 and Y31 of the K225E after extended exposure of cells to EGF, with a decrease in ACTN4 aggregates in fibroblasts. These findings will provide evidence for targeting the N-termini of FSGS ACTN4 mutants to downregulate their actin binding activities for ameliorating the glomerulosclerotic phenotype of patients.


Blood ◽  
1998 ◽  
Vol 92 (10) ◽  
pp. 3848-3856 ◽  
Author(s):  
K. Okuda ◽  
A. D’Andrea ◽  
R.A. Van Etten ◽  
J.D. Griffin

Activated ABL oncogenes cause B-cell leukemias in mice and chronic myelogenous leukemia in humans. However, the mechanism of transformation is complex and not well understood. A method to rapidly and reversibly activate c-ABL was created by fusing the extra-cytoplasmic and transmembrane domain of the erythropoietin (EPO) receptor with c-ABL (EPO R/ABL). When this chimeric receptor was expressed in Ba/F3 cells, the addition of EPO resulted in a dose-dependent activation of c-ABL tyrosine kinase and was strongly antiapoptotic and weakly mitogenic. To evaluate the contributions of various ABL domains to biochemical signaling and biological effects, chimeric receptors were constructed in which the ABL SH3 domain was deleted (▵SH3), the SH2 domain was deleted (▵SH2), the C-terminal actin-binding domain was deleted (▵ABD), or kinase activity was eliminated by a point mutation, K290M (KD). The mutant receptors were stably expressed in Ba/F3 cells and analyzed for signaling defects, proliferation, viability, and EPO-induced leukemia in nude mice. When compared with the ability of the full-length EPO R/ABL receptor to induce proliferation and support viability in vitro, the ▵SH3 mutant was equivalent, the ▵SH2 mutant was moderately impaired, and the ▵ABD and KD mutants were profoundly impaired. None of these cell lines caused leukemia in mice in the absence of pharmacological doses of EPO. However, in mice treated with EPO (10 U/d), death from leukemia occurred rapidly with wild-type and ▵SH3. However, time to death was prolonged by at least twofold for ▵SH2 and greater than threefold for ▵ABD. This inducible model of ABL transformation provides a method to link specific signaling defects with specific biological defects and has shown an important role for the C-terminal actin-binding domain in proliferation and transformation in the context of this receptor/oncogene.


Blood ◽  
1998 ◽  
Vol 92 (10) ◽  
pp. 3848-3856 ◽  
Author(s):  
K. Okuda ◽  
A. D’Andrea ◽  
R.A. Van Etten ◽  
J.D. Griffin

Abstract Activated ABL oncogenes cause B-cell leukemias in mice and chronic myelogenous leukemia in humans. However, the mechanism of transformation is complex and not well understood. A method to rapidly and reversibly activate c-ABL was created by fusing the extra-cytoplasmic and transmembrane domain of the erythropoietin (EPO) receptor with c-ABL (EPO R/ABL). When this chimeric receptor was expressed in Ba/F3 cells, the addition of EPO resulted in a dose-dependent activation of c-ABL tyrosine kinase and was strongly antiapoptotic and weakly mitogenic. To evaluate the contributions of various ABL domains to biochemical signaling and biological effects, chimeric receptors were constructed in which the ABL SH3 domain was deleted (▵SH3), the SH2 domain was deleted (▵SH2), the C-terminal actin-binding domain was deleted (▵ABD), or kinase activity was eliminated by a point mutation, K290M (KD). The mutant receptors were stably expressed in Ba/F3 cells and analyzed for signaling defects, proliferation, viability, and EPO-induced leukemia in nude mice. When compared with the ability of the full-length EPO R/ABL receptor to induce proliferation and support viability in vitro, the ▵SH3 mutant was equivalent, the ▵SH2 mutant was moderately impaired, and the ▵ABD and KD mutants were profoundly impaired. None of these cell lines caused leukemia in mice in the absence of pharmacological doses of EPO. However, in mice treated with EPO (10 U/d), death from leukemia occurred rapidly with wild-type and ▵SH3. However, time to death was prolonged by at least twofold for ▵SH2 and greater than threefold for ▵ABD. This inducible model of ABL transformation provides a method to link specific signaling defects with specific biological defects and has shown an important role for the C-terminal actin-binding domain in proliferation and transformation in the context of this receptor/oncogene.


PLoS ONE ◽  
2019 ◽  
Vol 14 (1) ◽  
pp. e0210403 ◽  
Author(s):  
Corinna Braun ◽  
Abel R. Alcázar-Román ◽  
Alexandra Laska ◽  
Katja Mölleken ◽  
Ursula Fleig ◽  
...  

1995 ◽  
Vol 108 (1) ◽  
pp. 63-71 ◽  
Author(s):  
S.J. Winder ◽  
L. Hemmings ◽  
S.K. Maciver ◽  
S.J. Bolton ◽  
J.M. Tinsley ◽  
...  

Utrophin, or dystrophin-related protein, is an autosomal homologue of dystrophin. The protein is apparently ubiquitously expressed and in muscle tissues the expression is developmentally regulated. Since utrophin has a similar domain structure to dystrophin it has been suggested that it could substitute for dystrophin in dystrophic muscle. Like dystrophin, utrophin has been shown to be associated with a membrane-bound glycoprotein complex. Here we demonstrate that expressed regions of the predicted actin binding domain in the NH2 terminus of utrophin are able to bind to F-actin in vitro, but do not interact with G-actin. The utrophin actin binding domain was also able to associate with actin-containing structures, stress fibres and focal contacts, when microinjected into chick embryo fibroblasts. The expressed NH2-terminal 261 amino acid domain of utrophin has an affinity for skeletal F-action (Kd 19 +/- 2.8 microM), midway between that of the corresponding domains of alpha-actinin (Kd 4 microM) and dystrophin (Kd 44 microM). Moreover, this utrophin domain binds to non-muscle actin with a approximately 4-fold higher affinity than to skeletal muscle actin. These data (together with those of Matsumura et al. (1992) Nature, 360, 588–591) demonstrate for the first time that utrophin is capable of performing a functionally equivalent role to that of dystrophin. The NH2 terminus of utrophin binds to actin and the COOH terminus binds to the membrane associated glycoprotein complex, thus in non-muscle and developing muscle utrophin performs the same predicted ‘spacer’ or ‘shock absorber’ role as dystrophin in mature muscle tissues. These data suggest that utrophin could replace dystrophin functionally in dystrophic muscle.


Sign in / Sign up

Export Citation Format

Share Document