scholarly journals A Secure Image Encryption Algorithm Based on Rubik's Cube Principle

2012 ◽  
Vol 2012 ◽  
pp. 1-13 ◽  
Author(s):  
Khaled Loukhaoukha ◽  
Jean-Yves Chouinard ◽  
Abdellah Berdai

In the past few years, several encryption algorithms based on chaotic systems have been proposed as means to protect digital images against cryptographic attacks. These encryption algorithms typically use relatively small key spaces and thus offer limited security, especially if they are one-dimensional. In this paper, we proposed a novel image encryption algorithm based on Rubik's cube principle. The original image is scrambled using the principle of Rubik's cube. Then, XOR operator is applied to rows and columns of the scrambled image using two secret keys. Finally, the experimental results and security analysis show that the proposed image encryption scheme not only can achieve good encryption and perfect hiding ability but also can resist exhaustive attack, statistical attack, and differential attack.

2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Adrian-Viorel Diaconu ◽  
Khaled Loukhaoukha

A recently proposed secure image encryption scheme has drawn attention to the limited security offered by chaos-based image encryption schemes (mainly due to their relatively small key space) proposing a highly robust approach, based on Rubik's cube principle. This paper aims to study a newly designed image cryptosystem that uses the Rubik's cube principle in conjunction with a digital chaotic cipher. Thus, the original image is shuffled on Rubik's cube principle (due to its proven confusion properties), and then XOR operator is applied to rows and columns of the scrambled image using a chaos-based cipher (due to its proven diffusion properties). Finally, the experimental results and security analysis show that the newly proposed image encryption scheme not only can achieve good encryption and perfect hiding ability but also can resist any cryptanalytic attacks (e.g., exhaustive attack, differential attack, statistical attack, etc.).


Author(s):  
Showkat Ahmad Bhat ◽  
Amandeep Singh

Background & Objective: Digital multimedia exchange between different mobile communication devices has increased rapidly with the invention of the high-speed data services like LTE-A, LTE, and WiMAX. However, there are always certain security risks associated with the use of wireless communication technologies. Methods: To protect the digital images against cryptographic attacks different image encryption algorithms are being employed in the wireless communication networks. These algorithms use comparatively less key spaces and accordingly offer inadequate security. The proposed algorithm described in this paper based on Rubik’s cube principle because of its high confusion and diffusion properties, Arnold function having effective scrambling power, blocking cipher with block encryption and permutation powers. The main strength of the proposed algorithm lies in the large key spaces and the combination of different high power encryption techniques at each stage of algorithm. The different operations employed on the image are with four security keys of different key spaces at multiple stages of the algorithm. Results & Conclusion: Finally, the effectiveness and the security analysis results shows that the proposed image encryption algorithm attains high encryption and security capabilities along with high resistance against cryptanalytic attacks, differential attacks and statistical attacks.


PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0260014
Author(s):  
Zhongyue Liang ◽  
Qiuxia Qin ◽  
Changjun Zhou ◽  
Ning Wang ◽  
Yi Xu ◽  
...  

Current image encryption methods have many shortcomings for the medical image encryption with high resolution, strong correlation and large storage space, and it is difficult to obtain reliable clinically applicable medical images. Therefore, this paper proposes a medical image encryption algorithm based on a new five-dimensional three-leaf chaotic system and genetic operation. And the dynamic analysis of the phase diagram and bifurcation diagram of the five-dimensional three-leaf chaotic system selected in this paper is carried out, and NIST is used to test the randomness of its chaotic sequence. This algorithm follows the diffusion-scrambling framework, especially using the principle of DNA recombination combined with the five-dimensional three-leaf chaotic system to generate a chaotic matrix that participates in the operation. The bit-level DNA mutation operation is introduced in the diffusion, and the scrambling and diffusion effects have been further improved. Algorithm security and randomness have been enhanced. This paper evaluates the efficiency of this algorithm for medical image encryption in terms of security analysis and time performance. Security analysis is carried out from key space, information entropy, histogram, similarity between decrypted image and original image, PSNR, correlation, sensitivity, noise attack, cropping attack and so on. Perform time efficiency analysis from the perspective of time performance. The comparison between this algorithm and the experimental results obtained by some of the latest medical image encryption algorithms shows that this algorithm is superior to the existing medical image encryption algorithms to a certain extent in terms of security and time efficiency.


Symmetry ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 1393
Author(s):  
Yulan Kang ◽  
Linqing Huang ◽  
Yan He ◽  
Xiaoming Xiong ◽  
Shuting Cai ◽  
...  

Many plaintext-related or non-plaintext-related image encryption algorithms based on chaotic systems have been found inefficient and insecure under chosen plaintext attacks. In this paper, a novel plaintext-related mechanism based on the peculiarity of plaintext DNA coding (PPDC) is presented and used to developed a symmetric image encryption algorithm. In our scheme, a hyper-chaotic Lorenz system is used to produce four chaotic sequences. Firstly, by using one chaotic sequence to control the DNA rules, the original image is encoded to obtain the image DNA coding and PPDC, and another chaotic sequence is encoded into a DNA sequence, which is used in the DNA XOR operation. Then, the processing of the remaining two chaotic sequences by using the PPDC is performed to obtain two key streams, which are used in the permutation stage. After performing the traditional permutation operation and DNA XOR operation, the cipher image is obtained. Because of the use of the PPDC, the key streams used in the permutation stage are related to the secret keys and plaintext image, which gives the encryption system higher plaintext sensitivity and security. The simulation experimental results and security analysis demonstrate that the proposed encryption system possesses high efficiency and security and can resist various typical attacks like exhaustive attack, statistical attack, and differential attack effectively.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Jian Zhang ◽  
Yutong Zhang

Image encryption technology has been applied in many fields and is becoming the main way of protecting the image information security. There are also many ways of image encryption. However, the existing encryption algorithms, in order to obtain a better effect of encryption, always need encrypting several times. There is not an effective method to decide the number of encryption times, generally determined by the human eyes. The paper proposes an image encryption algorithm based on chaos and simultaneously proposes a balanced pixel algorithm to determine the times of image encryption. Many simulation experiments have been done including encryption effect and security analysis. Experimental results show that the proposed method is feasible and effective.


Sign in / Sign up

Export Citation Format

Share Document