scholarly journals The Hepatoprotective Effect of Sodium Nitrite on Cold Ischemia-Reperfusion Injury

2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Wei Li ◽  
Zihui Meng ◽  
Yuliang Liu ◽  
Rakesh P. Patel ◽  
John D. Lang

Liver ischemia-reperfusion injury is a major cause of primary graft non-function or initial function failure post-transplantation. In this study, we examined the effects of sodium nitrite supplementation on liver IRI in either Lactated Ringer's (LR) solution or University of Wisconsin (UW) solution. The syngeneic recipients of liver grafts were also treated with or without nitrite by intra-peritoneal injection. Liver AST and LDH release were significantly reduced in both nitrite-supplemented LR and UW preservation solutions compared to their controls. The protective effect of nitrite was more efficacious with longer cold preservation times. Liver histological examination demonstrated better preserved morphology and architecture with nitrite treatment. Hepatocellular apoptosis was significantly reduced in the nitrite-treated livers compared their controls. Moreover, liver grafts with extended cold preservation time of 12 to 24 hours demonstrated improved liver tissue histology and function post-reperfusion with either the nitrite-supplemented preservation solution or in nitrite-treated recipients. Interestingly, combined treatment of both the liver graft and recipient did not confer protection. Thus, nitrite treatment affords significant protection from cold ischemic and reperfusion injury to donor livers and improves liver graft acute function post-transplantation. The results from this study further support the potential for nitrite therapy to mitigate ischemia-reperfusion injury in solid organ transplantation.

2020 ◽  
Vol 21 (2) ◽  
pp. 631 ◽  
Author(s):  
Lina Jakubauskiene ◽  
Matas Jakubauskas ◽  
Bettina Leber ◽  
Kestutis Strupas ◽  
Philipp Stiegler ◽  
...  

In recent decades, solid organ transplantation (SOT) has increased the survival and quality of life for patients with end-stage organ failure by providing a potentially long-term treatment option. Although the availability of organs for transplantation has increased throughout the years, the demand greatly outweighs the supply. One possible solution for this problem is to extend the potential donor pool by using extended criteria donors. However, organs from such donors are more prone to ischemia reperfusion injury (IRI) resulting in higher rates of delayed graft function, acute and chronic graft rejection and worse overall SOT outcomes. This can be overcome by further investigating donor preconditioning strategies, graft perfusion and storage and by finding novel therapeutic agents that could reduce IRI. relaxin (RLX) is a peptide hormone with antifibrotic, antioxidant, anti-inflammatory and cytoprotective properties. The main research until now focused on heart failure; however, several preclinical studies showed its potentials for reducing IRI in SOT. The aim of this comprehensive review is to overview currently available literature on the possible role of RLX in reducing IRI and its positive impact on SOT.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Pascal Rowart ◽  
Pauline Erpicum ◽  
Olivier Detry ◽  
Laurent Weekers ◽  
Céline Grégoire ◽  
...  

Ischemia/reperfusion injury (IRI) represents a worldwide public health issue of increasing incidence. IRI may virtually affect all organs and tissues and is associated with significant morbidity and mortality. Particularly, the duration of blood supply deprivation has been recognized as a critical factor in stroke, hemorrhagic shock, or myocardial infarction, as well as in solid organ transplantation (SOT). Pathophysiologically, IRI causes multiple cellular and tissular metabolic and architectural changes. Furthermore, the reperfusion of ischemic tissues induces both local and systemic inflammation. In the particular field of SOT, IRI is an unavoidable event, which conditions both short- and long-term outcomes of graft function and survival. Clinically, the treatment of patients with IRI mostly relies on supportive maneuvers since no specific target-oriented therapy has been validated thus far. In the present review, we summarize the current literature on mesenchymal stromal cells (MSC) and their potential use as cell therapy in IRI. MSC have demonstrated immunomodulatory, anti-inflammatory, and tissue repair properties in rodent studies and in preliminary clinical trials, which may open novel avenues in the management of IRI and SOT.


2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Fuxun Yang ◽  
Yu Lei ◽  
Rongan Liu ◽  
Xiaoxiu Luo ◽  
Jiajia Li ◽  
...  

Ischemia reperfusion injury (IRI) in organ transplantation has always been an important hotspot in organ protection. Hydrogen, as an antioxidant, has been shown to have anti-inflammatory, antioxidant, and antiapoptotic effects. In this paper, the protective effect of hydrogen against IRI in organ transplantation has been reviewed to provide clues for future clinical studies.


2021 ◽  
Vol 22 (3) ◽  
pp. 1216
Author(s):  
Jordi Guiteras ◽  
Laura De Ramon ◽  
Elena Crespo ◽  
Nuria Bolaños ◽  
Silvia Barcelo-Batllori ◽  
...  

Many studies have shown both the CD28—D80/86 costimulatory pathway and the PD-1—PD-L1/L2 coinhibitory pathway to be important signals in modulating or decreasing the inflammatory profile in ischemia-reperfusion injury (IRI) or in a solid organ transplant setting. The importance of these two opposing pathways and their potential synergistic effect led our group to design a human fusion recombinant protein with CTLA4 and PD-L2 domains named HYBRI. The objective of our study was to determine the HYBRI binding to the postulated ligands of CTLA4 (CD80) and PD-L2 (PD-1) using the Surface Plasmon Resonance technique and to evaluate the in vivo HYBRI effects on two representative kidney inflammatory models—rat renal IRI and allogeneic kidney transplant. The Surface Plasmon Resonance assay demonstrated the avidity and binding of HYBRI to its targets. HYBRI treatment in the models exerted a high functional and morphological improvement. HYBRI produced a significant amelioration of renal function on day one and two after bilateral warm ischemia and on days seven and nine after transplant, clearly prolonging the animal survival in a life-sustaining renal allograft model. In both models, a significant reduction in histological damage and CD3 and CD68 infiltrating cells was observed. HYBRI decreased the circulating inflammatory cytokines and enriched the FoxP3 peripheral circulating, apart from reducing renal inflammation. In conclusion, the dual and opposite costimulatory targeting with that novel protein offers a good microenvironment profile to protect the ischemic process in the kidney and to prevent the kidney rejection, increasing the animal’s chances of survival. HYBRI largely prevents the progression of inflammation in these rat models.


2017 ◽  
Vol 32 (4) ◽  
pp. 298-303 ◽  
Author(s):  
Ming-xiang Cheng ◽  
Ping Huang ◽  
Qiang He ◽  
Yong Chen ◽  
Jin-zheng Li

Sign in / Sign up

Export Citation Format

Share Document