cold preservation
Recently Published Documents


TOTAL DOCUMENTS

358
(FIVE YEARS 28)

H-INDEX

33
(FIVE YEARS 2)

Author(s):  
Dong Cui ◽  
Bin Wu ◽  
Dali He ◽  
Yanen Wang ◽  
Yong Jiao ◽  
...  

Percutaneous transluminal angioplasty (PTRA) is a common treatment method for renal vascular disease (RVD). However, PTRA may not be effective in patients with abnormal vascular disease. Renal autotransplantation (RAT) has been used as an alternative therapy for these diseases. Restrictions due to intracorporeal kidney cold preservation and the renal function of intracorporeal RAT were not as well protected compared with open operation. We developed this technique of 3D-printed polylactide (PLA) cold jackets for laparoscopic complete intracorporeal RAT for the purpose of better protecting the renal function and determining the feasibility of this novel procedure. The procedure was successfully applied to a 51-year-old woman with bilateral renal artery stenosis. The operation time was 5 hours, and blood loss was 200 ml. The patient’s blood pressure remained constant throughout the operation, and the pressure was maintained at 120-140/70–90 mmHg without antihypertensive drugs 1 week after the operation. B-ultrasound showed that the blood flow signal of the transplanted kidney was normal and the boundary between the skin and medulla was clear. The patient was discharged 2 weeks after surgery. One year postoperatively, Doppler ultrasound of the autotransplant showed that the transplanted kidney was normal in size and shape. Radionuclide renal dynamic imaging revealed that the glomerular filtration rate (GFR) of the transplanted kidney was 36.9 ml/min. 3D-printed polylactide (PLA) cold jackets for laparoscopic complete intracorporeal RAT are a safe and effective method for the treatment of renal artery stenosis and represent a feasible method for preserving the renal function of severe renal artery stenosis patients; however, the technology is still at the exploratory stage and has room for further improvements.


Cells ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2912
Author(s):  
Zhichao Wu ◽  
Jialiang Liang ◽  
Wei Huang ◽  
Lin Jiang ◽  
Christian Paul ◽  
...  

A complete and prompt cardiac arrest using a cold cardioplegic solution is routinely used in heart transplantation to protect the graft function. However, warm ischemic time is still inevitable during the procedure to isolate donor hearts in the clinical setting. Our knowledge of the mechanism changes prevented by cold storage, and how warm ischemia damages donor hearts, is extremely poor. The potential consequences of this inevitable warm ischemic time to grafts, and the underlying potential protective mechanism of prompt graft cooling, have been studied in order to explore an advanced graft protection strategy. To this end, a surgical procedure, including 10–15 min warm ischemic time during procurement, was performed in mouse models to mimic the clinical situation (Group I), and compared to a group of mice that had the procurement performed with prompt cooling procedures (Group II). The myocardial morphologic changes (including ultrastructure) were then assessed by electron and optical microscopy after 6 h of cold preservation. Furthermore, syngeneic heart transplantation was performed after 6 h of cold preservation to measure the graft heart function. An electron microscopy showed extensive damage, including hypercontracted myofibers with contraction bands, and damaged mitochondria that released mitochondrial contents in Group I mice, while similar patterns of damage were not observed in the mice from Group II. The results from both the electron microscopy and immunoblotting verified that cardiac mitophagy (protective mitochondrial autophagy) was present in the mice from Group II, but was absent in the mice from Group I. Moreover, the mice from Group II demonstrated faster rebeating times and higher beating scores, as compared to the mice from Group I. The pressure catheter system results indicated that the graft heart function was significantly more improved in the mice from Group II than in those from Group I, as demonstrated by the left ventricle systolic pressure (31.96 ± 6.54 vs. 26.12 ± 8.87 mmHg), the +dp/dt (815.6 ± 215.4 vs. 693.9 ± 153.8 mmHg/s), and the -dp/dt: (492.4 ± 92.98 vs. 418.5 ± 118.9 mmHg/s). In conclusion, the warm ischemic time during the procedure impaired the graft function and destroyed the activation of mitophagy. Thus, appropriate mitophagy activation has emerged as a promising therapeutic target that may be essential for graft protection and functional improvement during heart transplantation.


Metabolites ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 396
Author(s):  
Ibitamuno Caleb ◽  
Luca Erlitz ◽  
Vivien Telek ◽  
Mónika Vecsernyés ◽  
György Sétáló ◽  
...  

Cold ischemic injury to the intestine during preservation remains an unresolved issue in transplantation medicine. Autophagy, a cytoplasmic protein degradation pathway, is essential for metabolic adaptation to starvation, hypoxia, and ischemia. It has been implicated in the cold ischemia (CI) of other transplantable organs. This study determines the changes in intestinal autophagy evoked by cold storage and explores the effects of autophagy on ischemic grafts. Cold preservation was simulated by placing the small intestines of Wistar rats in an IGL-1 (Institute George Lopez) solution at 4 °C for varying periods (3, 6, 9, and 12 h). The extent of graft preservation injury (mucosal and cellular injury) and changes in autophagy were measured after each CI time. Subsequently, we determined the differences in apoptosis and preservation injury after activating autophagy with rapamycin or inhibiting it with 3-methyladenine. The results revealed that ischemic injury and autophagy were induced by cold storage. Autophagy peaked at 3 h and subsequently declined. After 12 h of storage, autophagic expression was reduced significantly. Additionally, enhanced intestinal autophagy by rapamycin was associated with less tissue, cellular, and apoptotic damage during and after the 12-h long preservation. After reperfusion, grafts with enhanced autophagy still presented with less injury. Inhibiting autophagy exhibited the opposite trend. These findings demonstrate intestinal autophagy changes in cold preservation. Furthermore, enhanced autophagy was protective against cold ischemia–reperfusion damage of the small bowels.


2021 ◽  
Author(s):  
Daniele Dondossola ◽  
Matteo Ravaioli ◽  
Giuliana Germinario ◽  
Matteo Cescon ◽  
Giorgio Rossi

PLoS ONE ◽  
2021 ◽  
Vol 16 (5) ◽  
pp. e0251055
Author(s):  
Diedert L. De Paep ◽  
Freya Van Hulle ◽  
Zhidong Ling ◽  
Marian Vanhoeij ◽  
Jacques Pirenne ◽  
...  

Organs from donors after controlled circulatory death (DCD III) exhibit a higher risk for graft dysfunction due to an initial period of warm ischemia. This procurement condition can also affect the yield of beta cells in islet isolates from donor pancreases, and hence their use for transplantation. The present study uses data collected and generated by our Beta Cell Bank to compare the number of beta cells in isolates from DCD III (n = 141) with that from donors after brain death (DBD, n = 609), before and after culture, and examines the influence of donor and procurement variables. Beta cell number per DCD III-organ was significantly lower (58 x 106 versus 84 x 106 beta cells per DBD-organ; p < 0.001) but their purity (24% insulin positive cells) and insulin content (17 μg / 106 beta cells in DCD III-organs versus 19 μg / 106 beta cells in DBD-organs) were similar. Beta cell number correlated negatively with duration of acirculatory warm ischemia time above 10 min; for shorter acirculatory warm ischemia time, DCD III-organs did not exhibit a lower beta cell yield (74 x 106 beta cells). Use of Institut Georges Lopez-1 cold preservation solution instead of University of Wisconsin solution or histidine-tryptophan-ketoglutarate also protected against the loss in beta cell yield from DCD III-organs (86 x 106 for IGL-1 versus 54 x 106 and 65 x 106 beta cells respectively, p = 0.042). Multivariate analysis indicates that both limitation of acirculatory warm ischemia time and use of IGL-1 prevent the reduced beta cell yield in islet cell isolates from DCD III-organs.


Author(s):  
Mohammad Ali Javadi ◽  
Amir Rezaeian Akbarzadeh ◽  
Tahereh Chamani ◽  
Mozhgan Rezaei Kanavi

Author(s):  
D. V. Voronov ◽  
M. G. Minina ◽  
A. K. Chomaev ◽  
I. M. Iljinsky ◽  
O. M. Tsirulnikova

Aim. To study the frequency of fatty hepatosis in liver biopsies of consecutive brain death donors before cold preservation. Materials and methods. Liver biopsies (before cold preservation) of 300 consecutive donors with brain death were studied. Histological preparations were stained with hematoxylin and eosin, and tricolor Masson staining was performed. Results. The frequency of different degrees of fat hepatosis in men and women did not differ significantly (>0.05). Fat dystrophy of hepatocytes was absent in more than half of the cases (n = 182; 60.7%). A slight degree of fatty degeneration was diagnosed in 57 (19,0%) donors. In total, 239 (79.7%) donor livers were absolutely suitable for transplantation. Moderate degree of steatosis, which is associated with early biliary complications, was detected in 18 (6.0%) cases, and severe degree, which is a contraindication to the use of the organ for transplantation, was detected in 43 (14.3%) cases. Conclusion. Before cold preservation, liver from brain death donors is relatively rarely unsuitable for transplantation.


Sign in / Sign up

Export Citation Format

Share Document