scholarly journals Development of a Rapid and Sensitive HPLC Assay Method for Lenalidomide Capsules and Its Related Substances

2012 ◽  
Vol 9 (3) ◽  
pp. 1165-1174 ◽  
Author(s):  
L. Maheshwara Reddy ◽  
K. Janardhan Reddy ◽  
L. Bhaskar Reddy ◽  
P. Raveendra Reddy

A chromatographic method was established for the determination of lenalidomide and related substances in 10 mg and 5 mg capsules using Sunfire C-18(250×4.6 mm ID, 5 μm) HPCL column with 85:15 v/v ratio of mobile phases A (mixture of phosphoric acid buffer and 1-octane sulphonic acid sodium salt) and B(55: 45 v/v ratio of methanol and acetonitrile) at 40°C and 210 nm wave length. The degradation studies were performed using 0.1N HCl, 0.1 N NaOH, 1% v/v hydrogen peroxide, humidity, UV at 254 nm, Sun light, and heat to 60°C. No significant degradation of lenalidomide was observed. However, the slight degradation was observed in presence of NaOH. The developed HPLC method gave the peaks purity angle was less their threshold angle, indicating it to be suitable for stability studies. It was validated with respect to linearity, accuracy, precision, ruggedness, and robustness.

Author(s):  
V.L.N. Balaji Gupta Tiruveedhi ◽  
Venkateswara Rao Battula ◽  
Kishore Babu Bonige ◽  
Tejeswarudu B.

This research work was designed to establish and validate a novel stability indicating RP-HPLC method for the combined determination of Benidipine hydrochloride (BHE) and Nebivolol hydrochloride (NHE) in bulk and tablets, dependent on ICH guidelines.The assay method to analyse BHE and NHE was optimized with isocratic elution using acetonitrile: 0.1M acetate buffer (45:55, pH 5.1), Lichrospher ODS RP-18 column and flow pace of 1 ml/min. Total time for single run was 14 min. The injection quantity was 20μl, and was detected at 249nm. The method was verified on a concentration series of 1.25-10μg/ml (NHE) and 1.0-10μg/ml (BHE) for precision, accuracy and linearity. The LOD values were 0.059µg/ml and 0.028µg/ml for NHE and BHE, respectively. The LOQ values were 0.196µg/ml for NHE and 0.094µg/ml for BHE. The recovery percentages were 98.60-100.11% (BHE) and 98.94-101.50% (NHE) with relative standard deviation 0.250-0.694% (BHE) and 0.183-0.400% (NHE). The method was also observed to be efficient, and was sufficiently specific to measure BHE and NHE in the presence of stress-produced degradation products.


2017 ◽  
Vol 9 (2) ◽  
pp. 34
Author(s):  
N. Balaji ◽  
Sayeeda Sultana

Objective: An efficient, high performance liquid chromatographic method has been developed and validated for the quantification of related substances in pioglitazone hydrochloride drug substance.Methods: This method includes the determination of three related substances in pioglitazone hydrochloride. The mobile phase A is 0.1% w/v triethylamine in water with pH 2.5 adjusted by dilute phosphoric acid. The mobile phase B is premixed and degassed mixtures of acetonitrile and methanol. The flow rate was 1 ml/min. The elution used was gradient mode. The HPLC column used for the analysis was symmetry C18 with a length of 250 mm, the internal diameter of 4.6 mm and particle size of 5.0 microns.Results: The developed method was found to be linear with the range of 0.006-250% with a coefficient of correlation 0.99. The precision study revealed that the percentage relative standard deviation was within the acceptable limit. The limit of detection and limit of quantitation of the impurities was less than 0.002%and 0.006% with respect to pioglitazone hydrochloride test concentration of 2000 µg/ml respectively. This method has been validated as per ICH guidelines Q2 (R1).Conclusion: A reliable, economical HPLC method was magnificently established for quantitative analysis of related substances of pioglitazone hydrochloride drug substance.


2018 ◽  
Vol 6 (03) ◽  
pp. 48-51
Author(s):  
D. Mamatha ◽  
G. Naveen ◽  
Devi Singh

A simple, accurate, precise and sensitive RP-HPLC assay method have been validated for the simultaneous estimation of ciprofloxacin and flucionolone in pharmaceutical formulation by RP-HPLC .ciprofloxacin and flucionolone is separated using Develosil ODS HG-5 RP C18, 5μm, 15cmx4.6mm i.d. column at a flow rate of 0.8 ml/ min. Here resolution was good, theoretical plate count and symmetry was appropriate .The LOD and LOQ were calculated using statistical methods. The % RSD values were less than 1.The validation parameters, tested in accordance with the requirements of ICH guidelines, prove the suitability of this method. The method was successfully applied for determination of drug in tablets, wherein no interference from tablet excipients was observed, indicating the specificity of the developed method.The proposed method was found to be simple, precise, accurate, rapid, economic and reproducible for the estimation of ciprofloxacin and flucionolone in pharmaceutical formulation.


2011 ◽  
Vol 6 (6) ◽  
pp. 1934578X1100600
Author(s):  
Laurent Boyer ◽  
Béatrice Baghdikian ◽  
Sok-Siya Bun ◽  
Khalil Taoubi ◽  
Ana Diaz-Lanza ◽  
...  

Root barks of Chionanthus virginicus L. are used in homeopathic medicines in the treatment of icterus and hepatitis. The objective of this study is to identify novel secoiridoids and lignans and to develop a simple and reliable HPLC method for the determination of oleuropein, phillyrin, total secoiridoids and total lignans for quality control and stability studies of C. virginicus herbal drug and preparations. Secoiridoids and lignans were purified by preparative HPLC. Compounds previously described were identified by HPLC according to their retention times and UV spectra. Structures of new compounds were determined by NMR. Two compounds namely excelside B and acetoxypinoresinol-4″- O-β-D-glucoside are described for the first time in the drug. HPLC separation was performed on Symmetry C18 (Waters) by gradient elution using acetonitrile and 0.2% aqueous phosphoric acid. The method was validated for specificity, linearity, precision, accuracy, limits of detection and quantification for simultaneous determination of secoiridoids and lignans in herbal drug and herbal preparations as mother tinctures. The proposed HPLC method is linear in the range studied (r2 ≥ 0.9989) for all the analytes. The method is precise with intra- and inter-day variations of less than 4%. The mean recoveries of the analytes range from 99.65 to 102.81%. The method is successfully applied to the quantification of nine compounds belonging to secoiridoids and lignans and for the stability studies of these compounds. The study allowed completing the phytochemical knowledge of C. virginicus. This simple developed assay could be used as tools for routine quality control of C. virginicus herbal drug and herbal medicinal products.


2019 ◽  
Vol 15 (7) ◽  
pp. 724-737
Author(s):  
Regella Venkata Rama Prabhakara Sastry ◽  
Chidambaram Subramanian Venkatesan ◽  
Bhetanabhotla Sarveswara Sastry ◽  
Singaram Sathiyanarayanan ◽  
Sanapati Murali

Background: Four major degradation products (1-4) of pralatrexate injection were formed under hydrolytic and light stress conditions. The impurities 1 and 2 were the potential photo degradation products and the impurities 3 and 4 were the potential hydrolytic degradation products. Objective: To prepare and characterize the novel degradation impurities 1, 2, 3 and 4 of pralatrexate injection using NMR, HR MS and IR techniques; and to develop and validate stability indicating analytical reverse phase HPLC-UV method for quantitative simultaneous determination of potential degradation impurities, related substances of pralatrexate and pralatrexate active in pralatrexate liquid formulation. Methods: Gradient HPLC-UV method was developed for the quantification of degradation impurities, related substances and pralatrexate in pralatrexate injection. The separation was achieved on C18 column (250 mm X 4.6 mm, 5µm) using a mobile phase composed of sodium dihydrogen phosphate monohydrate in water (pH 3.0; 0.01M) and methanol. The components were monitored by the UVvisible detector at 242 nm with a flow rate of 1.0 mL/min. Results: The method validation parameters such as accuracy, selectivity, linearity, LOD, LOQ, precision, ruggedness and robustness were demonstrated successfully for pralatrexate and its degradation impurities. The stability-indicating capability of the developed HPLC method was demonstrated by adequate separation of all potential pralatrexate related substances from pralatrexate stressed drug product samples. Conclusion: The developed stability indicating HPLC method was found to be suitable for the simultaneous quantitative determination of potential degradation impurities and related substances of pralatrexate and pralatrexate active in pralatrexate liquid formulation.


Sign in / Sign up

Export Citation Format

Share Document