scholarly journals Global Dynamics of Certain Homogeneous Second-Order Quadratic Fractional Difference Equation

2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
M. Garić-Demirović ◽  
M. R. S. Kulenović ◽  
M. Nurkanović

We investigate the basins of attraction of equilibrium points and minimal period-two solutions of the difference equation of the formxn+1=xn-12/(axn2+bxnxn-1+cxn-12),n=0,1,2,…,where the parameters  a,  b, and  c  are positive numbers and the initial conditionsx-1andx0are arbitrary nonnegative numbers. The unique feature of this equation is the coexistence of an equilibrium solution and the minimal period-two solution both of which are locally asymptotically stable.

2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Toufik Khyat ◽  
M. R. S. Kulenović

In this paper, certain dynamic scenarios for general competitive maps in the plane are presented and applied to some cases of second-order difference equation xn+1=fxn,xn−1, n=0,1,…, where f is decreasing in the variable xn and increasing in the variable xn−1. As a case study, we use the difference equation xn+1=xn−12/cxn−12+dxn+f, n=0,1,…, where the initial conditions x−1,x0≥0 and the parameters satisfy c,d,f>0. In this special case, we characterize completely the global dynamics of this equation by finding the basins of attraction of its equilibria and periodic solutions. We describe the global dynamics as a sequence of global transcritical or period-doubling bifurcations.


2013 ◽  
Vol 2013 ◽  
pp. 1-9
Author(s):  
E. J. Janowski ◽  
M. R. S. Kulenović

Consider the difference equationxn+1=f(xn,…,xn−k),n=0,1,…,wherek∈{1,2,…}and the initial conditions are real numbers. We investigate the existence and nonexistence of the minimal period-two solution of this equation when it can be rewritten as the nonautonomous linear equationxn+l=∑i=1−lkgixn−i,n=0,1,…,wherel,k∈{1,2,…}and the functionsgi:ℝk+l→ℝ. We give some necessary and sufficient conditions for the equation to have a minimal period-two solution whenl=1.


2015 ◽  
Vol 2015 ◽  
pp. 1-9
Author(s):  
Awad A. Bakery

We give in this work the sufficient conditions on the positive solutions of the difference equationxn+1=α+(xn-1m/xnk),  n=0,1,…, whereα,k, andm∈(0,∞)under positive initial conditionsx-1,  x0to be bounded,α-convergent, the equilibrium point to be globally asymptotically stable and that every positive solution converges to a prime two-periodic solution. Our results coincide with that known for the casesm=k=1of Amleh et al. (1999) andm=1of Hamza and Morsy (2009). We offer improving conditions in the case ofm=1of Gümüs and Öcalan (2012) and explain our results by some numerical examples with figures.


2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Senada Kalabušić ◽  
M. R. S. Kulenović ◽  
M. Mehuljić

We investigate the local stability and the global asymptotic stability of the difference equationxn+1=αxn2+βxnxn-1+γxn-1/Axn2+Bxnxn-1+Cxn-1,n=0,1,…with nonnegative parameters and initial conditions such thatAxn2+Bxnxn-1+Cxn-1>0, for alln≥0. We obtain the local stability of the equilibrium for all values of parameters and give some global asymptotic stability results for some values of the parameters. We also obtain global dynamics in the special case, whereβ=B=0, in which case we show that such equation exhibits a global period doubling bifurcation.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Chenquan Gan ◽  
Xiaofan Yang ◽  
Wanping Liu

This paper aims to investigate the global stability of negative solutions of the difference equationxn+1=(α+βxn-k)/(γ+xn),n=0,1,2,…, where the initial conditionsx-k,…,x0∈-∞,0,kis a positive integer, and the parametersβ,  γ<0,  α>0. By utilizing the invariant interval and periodic character of solutions, it is found that the unique negative equilibrium is globally asymptotically stable under some parameter conditions. Additionally, two examples are given to illustrate the main results in the end.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
A. Brett ◽  
E. J. Janowski ◽  
M. R. S. Kulenović

Consider the difference equation xn+1=(α+∑i=0kaixn-i)/(β+∑i=0kbixn-i),  n=0,1,…, where all parameters α,β,ai,bi,  i=0,1,…,k, and the initial conditions xi,  i∈{-k,…,0} are nonnegative real numbers. We investigate the asymptotic behavior of the solutions of the considered equation. We give easy-to-check conditions for the global stability and global asymptotic stability of the zero or positive equilibrium of this equation.


2015 ◽  
Vol 2015 ◽  
pp. 1-16 ◽  
Author(s):  
A. Brett ◽  
M. R. S. Kulenović

We consider the following system of difference equations:xn+1=xn2/B1xn2+C1yn2, yn+1=yn2/A2+B2xn2+C2yn2,  n=0, 1, …,  whereB1,C1,A2,B2,C2are positive constants andx0, y0≥0are initial conditions. This system has interesting dynamics and it can have up to seven equilibrium points as well as a singular point at(0,0), which always possesses a basin of attraction. We characterize the basins of attractions of all equilibrium points as well as the singular point at(0,0)and thus describe the global dynamics of this system. Since the singular point at(0,0)always possesses a basin of attraction this system exhibits Allee’s effect.


2017 ◽  
Vol 27 (08) ◽  
pp. 1750128 ◽  
Author(s):  
Anda Xiong ◽  
Julien C. Sprott ◽  
Jingxuan Lyu ◽  
Xilu Wang

The famous Lorenz system is studied and analyzed for a particular set of parameters originally proposed by Lorenz. With those parameters, the system has a single globally attracting strange attractor, meaning that almost all initial conditions in its 3D state space approach the attractor as time advances. However, with a slight change in one of the parameters, the chaotic attractor coexists with a symmetric pair of stable equilibrium points, and the resulting tri-stable system has three intertwined basins of attraction. The advent of 3D printers now makes it possible to visualize the topology of such basins of attraction as the results presented here illustrate.


Author(s):  
Abdualrazaq Sanbo ◽  
Elsayed M. Elsayed ◽  
Faris Alzahrani

This paper is devoted to find the form of the solutions of a rational difference equations with arbitrary positive real initial conditions. Specific form of the solutions of two special cases of this equation are given.


2014 ◽  
Vol 2014 ◽  
pp. 1-5
Author(s):  
Hongjian Xi ◽  
Taixiang Sun ◽  
Bin Qin ◽  
Hui Wu

We consider the following difference equationxn+1=xn-1g(xn),n=0,1,…,where initial valuesx-1,x0∈[0,+∞)andg:[0,+∞)→(0,1]is a strictly decreasing continuous surjective function. We show the following. (1) Every positive solution of this equation converges toa,0,a,0,…,or0,a,0,a,…for somea∈[0,+∞). (2) Assumea∈(0,+∞). Then the set of initial conditions(x-1,x0)∈(0,+∞)×(0,+∞)such that the positive solutions of this equation converge toa,0,a,0,…,or0,a,0,a,…is a unique strictly increasing continuous function or an empty set.


Sign in / Sign up

Export Citation Format

Share Document