scholarly journals A Defected Ground Structure without Ground Contact Problem and Application to Branch Line Couplers

2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Jongsik Lim ◽  
Dal Ahn ◽  
Sang-Min Han ◽  
Yongchae Jeong ◽  
Haiwen Liu

A new defected ground structure (DGS) microstrip line that is free from the ground contact problem is described together with its application example. The proposed DGS microstrip line adopts a double-layered substrate. The first layer contains the microstrip line and DGS patterns on the top and bottom planes as with the conventional DGS line. The second substrate, of which upper metal plane has already been removed, is attached to the bottom ground plane of the first layer. This structure prevents the ground plane of the first substrate with DGS patterns from making contact with the metal housing. The proposed DGS microstrip line has advantageous transmission and rejection characteristics, without the ground contact problem of DGS patterns, which has been a critical problem of previous DGS lines. A 10 dB branch line hybrid coupler is designed and measured, as an example of application of the proposed DGS microstrip line.

2000 ◽  
Vol 36 (21) ◽  
pp. 1784 ◽  
Author(s):  
Jong-Sik Lim ◽  
Chul-Soo Kim ◽  
Jun-Seok Park ◽  
Dal Ahn ◽  
Sangwook Nam

2018 ◽  
Vol 876 ◽  
pp. 133-137
Author(s):  
Ping Cheng Chen ◽  
Chung Long Pan ◽  
J.D. Huang ◽  
S.H. Hong

A design and simulation for low pass microstrip line filter with defected ground structure has been researched, the main purpose is with the simplest method to design an ideal low pass filter. In this paper, simulated soft (Ansoft HFSS V.6.0) used to be simulated the frequency response under different geometric shape of DGS. The results show good performance of a low pass filter with DGS. Final, a low pass filter with DGS design and fabricated, The properties are shown as flow: center-frequency: 7.28G, S21:-47dB, cut-off frequency: 5.88GHz.


2018 ◽  
Vol 7 (3) ◽  
pp. 56-63 ◽  
Author(s):  
A. Jaiswal ◽  
R. K. Sarin ◽  
B. Raj ◽  
S. Sukhija

In this paper, a novel circular slotted rectangular patch antenna with three triangle shape Defected Ground Structure (DGS) has been proposed. Radiating patch is made by cutting circular slots of radius 3 mm from the three sides and center of the conventional rectangular patch structure and three triangle shape defects are presented on the ground layer. The size of the proposed antenna is 38 X 25 mm2. Optimization is performed and simulation results have been obtained using Empire XCcel 5.51 software. Thus, a miniaturized antenna is designed which has three impedance bandwidths of 0.957 GHz,  0.779 GHz, 0.665 GHz with resonant frequencies at 3.33 GHz, 6.97 GHz and 8.59 GHz and the corresponding return loss at the three resonant frequencies are -40 dB, -43 dB and -38.71 dB respectively. A prototype is also fabricated and tested. Fine agreement between the measured and simulated results has been obtained. It has been observed that introducing three triangle shape defects on the ground plane results in increased bandwidth, less return loss, good radiation pattern and better impedance matching over the required operating bands which can be used for wireless applications and future 5G applications.


Author(s):  
Dawit Fitsum ◽  
Dilip Mali ◽  
Mohammed Ismail

<p>This paper presents Dual-Band proximity coupled feed rectangular Microstrip patch antenna with slots on the radiating patch and Defected Ground Structure. Initially a simple proximity coupled feed rectangular Microstrip patch antenna resonating at 2.4 GHz is designed. Etching out a ‘Dumbbell’ shaped defect from the ground plane and ‘T’ shaped slot from the radiating patch of the proximity coupled feed rectangular Microstrip patch antenna, results in a Dual-Band operation, i.e., resonating at 2.4 GHz and 4.5 GHz; with 30.3 % and 18.8% reduction in the overall area of the patch and the ground plane of the reference antenna respectively. The proposed antenna resonates in S-band at frequency of 2.4 GHz with bandwidth of 123.6 MHz and C-band at frequency of 4.5 GHz with bandwidth of 200 MHz, and a very good return loss of -22.1818 dB and -19.0839 dB at resonant frequency of 2.4 GHz and 4.5 GHz respectively is obtained. The proposed antenna is useful for different wireless applications in the S-band and C-band.</p>


2004 ◽  
Vol 14 (4) ◽  
pp. 180-182 ◽  
Author(s):  
Hai-Wen Liu ◽  
Zheng-Fan Li ◽  
Xiao-Wei Sun ◽  
Jun-Fa Mao

2013 ◽  
Vol 385-386 ◽  
pp. 1292-1295
Author(s):  
Xu Han ◽  
Jian Hua Xu

A planar power divider operating over the whole Ku-band is presented. The proposed device utilizes a T-microstrip junction combined with defected ground structure and an elliptical patch at the centre of the T-junction. An isolation resistor is connected across the slotted ground plane. The simulated results of the divider show equal power split, insertion loss is less than 0.3dB, return loss of all ports are better than 15dB, and isolation is better than 15dB over the whole Ku-band.


Sign in / Sign up

Export Citation Format

Share Document