scholarly journals A New Technique of Laplace Variational Iteration Method for Solving Space-Time Fractional Telegraph Equations

2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Fatima A. Alawad ◽  
Eltayeb A. Yousif ◽  
Arbab I. Arbab

In this paper, the exact solutions of space-time fractional telegraph equations are given in terms of Mittage-Leffler functions via a combination of Laplace transform and variational iteration method. New techniques are used to overcome the difficulties arising in identifying the general Lagrange multiplier. As a special case, the obtained solutions reduce to the solutions of standard telegraph equations of the integer orders.

2016 ◽  
Vol 2016 ◽  
pp. 1-6 ◽  
Author(s):  
Pranay Goswami ◽  
Rubayyi T. Alqahtani

We present iteration formulae of a fractional space-time telegraph equation using the combination of fractional variational iteration method and local fractional Laplace transform.


2013 ◽  
Vol 2013 ◽  
pp. 1-2
Author(s):  
Yi-Hong Wang ◽  
Lan-Lan Huang

The variational iteration method was applied to the time fractional telegraph equation and some variational iteration formulae were suggested in (Sevimlican, 2010). Those formulae are improved by Laplace transform from which the approximate solutions of higher accuracies can be obtained.


2021 ◽  
Vol 25 (6 Part B) ◽  
pp. 4449-4455
Author(s):  
Shu-Xian Deng ◽  
Xin-Xin Ge

The main objective of the present article is to introduce a new analytical solution of the local fractional Landau-Ginzburg-Higgs equation on fractal media by means of the local fractional variational iteration transform method, which is coupling of the variational iteration method and Yang-Laplace transform method.


2012 ◽  
Vol 2012 ◽  
pp. 1-2 ◽  
Author(s):  
Ji-Huan He

Sevimlican suggested an effective algorithm for space and time fractional telegraph equations by the variational iteration method. This paper shows that algorithm can be updated by either variational iteration algorithm-II or the fractional variational iteration method.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Ali Konuralp ◽  
H. Hilmi Sorkun

Application process of variational iteration method is presented in order to solve the Volterra functional integrodifferential equations which have multi terms and vanishing delays where the delay functionθ(t)vanishes inside the integral limits such thatθ(t)=qtfor0<q<1,t≥0. Either the approximate solutions that are converging to the exact solutions or the exact solutions of three test problems are obtained by using this presented process. The numerical solutions and the absolute errors are shown in figures and tables.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Qian Lijuan ◽  
Tian Lixin ◽  
Ma Kaiping

We introduce the variational iteration method for solving the generalized Degasperis-Procesi equation. Firstly, according to the variational iteration, the Lagrange multiplier is found after making the correction functional. Furthermore, several approximations ofun+1(x,t)which is converged tou(x,t)are obtained, and the exact solutions of Degasperis-Procesi equation will be obtained by using the traditional variational iteration method with a suitable initial approximationu0(x,t). Finally, after giving the perturbation item, the approximate solution for original equation will be expressed specifically.


Sign in / Sign up

Export Citation Format

Share Document