scholarly journals Proportional Fair Power Allocation for Secondary Transmitters in the TV White Space

2013 ◽  
Vol 2013 ◽  
pp. 1-8
Author(s):  
Konstantinos Koufos ◽  
Riku Jäntti

The key bottleneck for secondary spectrum usage is the aggregate interference to the primary system receivers due to simultaneous secondary transmissions. Existing power allocation algorithms for multiple secondary transmitters in the TV white space either fail to protect the TV service in all cases or they allocate extremely low power levels to some of the transmitters. In this paper, we propose a power allocation algorithm that favors equally the secondary transmitters and it is able to protect the TV service in all cases. When the number of secondary transmitters is high, the computational complexity of the proposed algorithm becomes high too. We show how the algorithm could be modified to reduce its computational complexity at the cost of negligible performance loss. The modified algorithm could permit a spectrum allocation database to allocate near optimal transmit power levels to tens of thousands of secondary transmitters in real time. In addition, we describe how the modified algorithm could be applied to allow decentralized power allocation for mobile secondary transmitters. In that case, the proposed algorithm outperforms the existing algorithms because it allows reducing the communication signalling overhead between mobile secondary transmitters and the spectrum allocation database.

2019 ◽  
Vol 13 (5) ◽  
pp. 569-577
Author(s):  
Zhong Tian ◽  
Jun Wang ◽  
Jintao Wang ◽  
Jian Song

2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
Byungjin Cho ◽  
Konstantinos Koufos ◽  
Kalle Ruttik ◽  
Riku Jäntti

The Electronic Communication Committee (ECC) in Europe proposed a location-based transmission power allocation rule for secondary devices operating in the TV white space (TVWS). The further the secondary device is located from the TV cell border the higher transmission power level it can utilize. The Federal Communication Committee (FCC) in the US proposed a fixed transmission power allocation rule for all secondary transmitters. Both rules do not consider the secondary system’s self-interference while setting the transmission power levels. In this paper, we propose a power allocation scheme for a cellular secondary system. Unlike the ECC and the FCC proposals we do the power allocation by considering the self-interference. We define the power allocation scheme as an optimization problem. The sum cell border data rate of the secondary network is selected to be the optimization objective. We observe that the optimal transmission power levels become approximately constant over the secondary deployment area. The FCC rule captures the general trend for cellular deployment in the TVWS, since it suggests the use of constant power. However, the transmission power should not be set equal to 4 W but according to the allowable generated interference at the borders of the TV and secondary cells.


2017 ◽  
Vol 63 (4) ◽  
pp. 423-429 ◽  
Author(s):  
Ireneusz Olszewski

Abstract The considered problem covers routing and spectrum allocation problem (RSA problem) in Elastic Optical Networks while maintaining the spectrum continuity constraints, non-overlapping spectra constraints for adjacent connections on individual links of the network and spectrum contiguity constraints of the connection. In this article the modified version of the First Fit spectrum slot allocation policy for Fixed Alternate Routing in flexible optical networks has been proposed. The Fixed Alternate Routing with proposed spectrum allocation policy rejects fewer requests, provides less bandwidth blocking probability and less spectrum fragmentation than Fixed Alternate Routing with well-known First Fit and Exact Fit spectrum allocation policies. However, the cost of improving these parameters is a higher computational complexity of the proposed allocation policy.


2021 ◽  
Vol 11 (15) ◽  
pp. 7007
Author(s):  
Janusz P. Paplinski ◽  
Aleksandr Cariow

This article presents an efficient algorithm for computing a 10-point DFT. The proposed algorithm reduces the number of multiplications at the cost of a slight increase in the number of additions in comparison with the known algorithms. Using a 10-point DFT for harmonic power system analysis can improve accuracy and reduce errors caused by spectral leakage. This paper compares the computational complexity for an L×10M-point DFT with a 2M-point DFT.


Sign in / Sign up

Export Citation Format

Share Document