scholarly journals Existence and Uniqueness of Positive Solution for a Fractional Dirichlet Problem with Combined Nonlinear Effects in Bounded Domains

2013 ◽  
Vol 2013 ◽  
pp. 1-9
Author(s):  
Imed Bachar ◽  
Habib Mâagli

We prove the existence and uniqueness of a positive continuous solution to the following singular semilinear fractional Dirichlet problem(-Δ)α/2u=a1(x)uσ1+a2(x)uσ2, in D  limx→z∈∂D(δ(x))1-(α/2)u(x)=0,where0<α<2, σ1,  σ2∈(-1,1), Dis a boundedC1,1-domain inℝn,n≥2,andδ(x)denotes the Euclidian distance fromxto the boundary ofD.The nonnegative weight functionsa1,  a2are required to satisfy certain hypotheses related to the Karamata class. We also investigate the global behavior of such solution.

2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Ramzi S. Alsaedi

We establish the existence and uniqueness of a positive solution to the following fourth-order value problem:u(4)(x)=a(x)uσ(x),x∈(0,1)with the boundary conditionsu(0)=u(1)=u'(0)=u'(1)=0, whereσ∈(-1,1)andais a nonnegative continuous function on (0, 1) that may be singular atx=0orx=1. We also give the global behavior of such a solution.


Author(s):  
Xiyou Cheng ◽  
Lei Wei ◽  
Yimin Zhang

We consider the boundary Hardy–Hénon equation \[ -\Delta u=(1-|x|)^{\alpha} u^{p},\ \ x\in B_1(0), \] where $B_1(0)\subset \mathbb {R}^{N}$   $(N\geq 3)$ is a ball of radial $1$ centred at $0$ , $p>0$ and $\alpha \in \mathbb {R}$ . We are concerned with the estimate, existence and nonexistence of positive solutions of the equation, in particular, the equation with Dirichlet boundary condition. For the case $0< p<({N+2})/({N-2})$ , we establish the estimate of positive solutions. When $\alpha \leq -2$ and $p>1$ , we give some conclusions with respect to nonexistence. When $\alpha >-2$ and $1< p<({N+2})/({N-2})$ , we obtain the existence of positive solution for the corresponding Dirichlet problem. When $0< p\leq 1$ and $\alpha \leq -2$ , we show the nonexistence of positive solutions. When $0< p<1$ , $\alpha >-2$ , we give some results with respect to existence and uniqueness of positive solutions.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Habib Mâagli ◽  
Noureddine Mhadhebi ◽  
Noureddine Zeddini

We establish the existence and uniqueness of a positive solutionufor the following fractional boundary value problem:Dαu(x)=−a(x)uσ(x),x∈(0,1)with the conditionslimx→0+⁡x2−αu(x)=0,u(1)=0, where1<α≤2,σ∈(−1,1), andais a nonnegative continuous function on(0,1)that may be singular atx=0orx=1. We also give the global behavior of such a solution.


Author(s):  
Yunru Bai ◽  
Nikolaos S. Papageorgiou ◽  
Shengda Zeng

AbstractWe consider a parametric nonlinear, nonhomogeneous Dirichlet problem driven by the (p, q)-Laplacian with a reaction involving a singular term plus a superlinear reaction which does not satisfy the Ambrosetti–Rabinowitz condition. The main goal of the paper is to look for positive solutions and our approach is based on the use of variational tools combined with suitable truncations and comparison techniques. We prove a bifurcation-type theorem describing in a precise way the dependence of the set of positive solutions on the parameter $$\lambda $$ λ . Moreover, we produce minimal positive solutions and determine the monotonicity and continuity properties of the minimal positive solution map.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Habib Mâagli ◽  
Noureddine Mhadhebi ◽  
Noureddine Zeddini

We establish the existence and uniqueness of a positive solution for the fractional boundary value problem , with the condition , where , and is a nonnegative continuous function on that may be singular at or .


2014 ◽  
Vol 2014 ◽  
pp. 1-5
Author(s):  
Hongjian Xi ◽  
Taixiang Sun ◽  
Bin Qin ◽  
Hui Wu

We consider the following difference equationxn+1=xn-1g(xn),n=0,1,…,where initial valuesx-1,x0∈[0,+∞)andg:[0,+∞)→(0,1]is a strictly decreasing continuous surjective function. We show the following. (1) Every positive solution of this equation converges toa,0,a,0,…,or0,a,0,a,…for somea∈[0,+∞). (2) Assumea∈(0,+∞). Then the set of initial conditions(x-1,x0)∈(0,+∞)×(0,+∞)such that the positive solutions of this equation converge toa,0,a,0,…,or0,a,0,a,…is a unique strictly increasing continuous function or an empty set.


2018 ◽  
Vol 2018 ◽  
pp. 1-18
Author(s):  
Nguyen Huu Nhan ◽  
Le Thi Phuong Ngoc ◽  
Nguyen Thanh Long

We consider the Robin-Dirichlet problem for a nonlinear wave equation of Kirchhoff-Carrier type. Using the Faedo-Galerkin method and the linearization method for nonlinear terms, the existence and uniqueness of a weak solution are proved. An asymptotic expansion of high order in a small parameter of a weak solution is also discussed.


Sign in / Sign up

Export Citation Format

Share Document